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Reconstruction of Abel-transformable images: The Gaussian basis-set
expansion Abel transform method
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In this article we present a new method for reconstructing three-dimensional~3D! images with
cylindrical symmetry from their two-dimensional projections. The method is based on expanding
the projection in a basis set of functions that are analytical projections of known well-behaved
functions. The original 3D image can then be reconstructed as a linear combination of these
well-behaved functions, which have a Gaussian-like shape, with the same expansion coefficients as
the projection. In the process of finding the expansion coefficients, regularization is used to achieve
a more reliable reconstruction of noisy projections. The method is efficient and computationally
cheap and is particularly well suited for transforming projections obtained in photoion and
photoelectron imaging experiments. It can be used for any image with cylindrical symmetry,
requires minimal user’s input, and provides a reliable reconstruction in certain cases when the
commonly used Fourier–Hankel Abel transform method fails. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1482156#
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I. INTRODUCTION

The expanding use of photoion and photoelectron im
ing in studies of molecular dynamics has brought into foc
the need for efficient, high-fidelity image reconstructio1

This need has increased recently owing to the improved r
lution achieved via velocity map imaging and event-count
and centroiding techniques.2–4 Ideally, the image reconstruc
tion method should be able to reproduce the sharpest fea
in the image, have a large dynamic range, and handle n
well. In order to be used in routine laboratory applications
is desirable that such a method be fast and general, requ
minimal input from the experimenter.

Fortunately, in many applications of imaging, cylindric
symmetry exists with respect to the polarization vector of
excitation laser. This is the case when the kinetic energy
the charged particles obtained in the acceleration stag
much greater than their photoejection energy. In such ca
the three-dimensional~3D! image,I 5I (r ,z), is a function of
only two coordinates in a cylindrical coordinate system. L
P(x,z) define the 2D projection ofI (r ,z) on the detector
plane, (x,z), where thex axis is perpendicular to thez axis.
The two functions are then related by the Abel integral,5

P~x,z!52E
uxu

` rI ~r ,z!

Ar 22x2
dr. ~1!

a!Electronic mail: reisler@usc.edu
2630034-6748/2002/73(7)/2634/9/$19.00
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In imaging experiments, the projectionP(x,z) is measured
as a 2D arrayPPRNx3Nz with elements defined on an even
spaced 2D grid (xi ,zj )5( iD, j D) of sensors~or pixels! with
the total numberNx3Nz usually ranging from 105 to 106. In
this case

Pi j 52E h~x2xi ,z2zj !dx dzE
uxu

` rI ~r ,z!

Ar 22x2
dr, ~2!

whereh(x,z) defines an instrumental function to be specifi
later.

The quantity of interest is the imageI (r ,z), which can in
principle be obtained directly by evaluating the inverse Ab
transform,6

I ~r ,z!52
1

p E
r

` @dP~x,z!/dx#

Ax22r 2
dx. ~3!

However, using Eq.~3! is numerically impractical as it ha
singularities and requires derivative estimation for a gen
ally noisy function defined on a grid. Although attempts
use Eq.~3! were made~e.g., by fitting the experimental dat
at each slicez5const with analytical functions, and usin
Eq. ~3! to find the inverse Abel transform with analyticall
computed derivatives!,7–9 none of the proposed methods w
successful in achieving high quality inversion, especially
noisy projections.

Currently, the most commonly used method for calcul
ing the inverse Abel transform in charged particle imagi
4 © 2002 American Institute of Physics
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2635Rev. Sci. Instrum., Vol. 73, No. 7, July 2002 Reconstruction of Abel-transformable images
applications is the Fourier–Hankel technique.10 This method
is based on a representation of the inverse Abel transform~3!
via the Hankel transform of the Fourier transform of t
projection.10 It is widely used for reconstruction of imagin
data, as it is fast and produces satisfactory results for h
quality images with a small dynamic range. However,
method magnifies experimental noise and also produces
ficial structures when reconstructing images with hig
intensity sharp features. These artificial structures are de
dent on the particular fast Fourier transform and discr
Hankel transform algorithms used and, thus, differ for diff
ent implementations of the Fourier–Hankel method. Furth
more, as demonstrated in Sec. III, the artificial structu
extend through the entire reconstructed image, causing a
duction in resolution and in signal-to-noise ratio. In fact, t
Fourier–Hankel method becomes practically unusable
cases of excessively noisy images, or images with a la
dynamic range.

Recently, several methods have been developed in o
to alleviate these problems and achieve reliable transfor
tion of noisy experimental projections.1 Although they work
better than the Fourier–Hankel transform in many cas
they also have drawbacks. The back-projection method in
duced by Matsumi and co-workers employs filtering in t
frequency domain to reduce experimental noise.11 This is
done at a cost of smoothing the data and, therefore, a po
tial loss of information. The back-projection procedure d
veloped by Helm and co-workers is too complicated a
time-consuming to be used in routine applications and
quires specific input parameters for each system.12,13 The
simplified ‘‘onion peeling’’ method does not handle we
noisy images; e.g., the noise in the reconstructed image
creases progressively towards the center.12,13 The iterative
procedure of Vrakking does not have reconstruction artifa
but is slow.14

In this article we describe a new image reconstruct
method that can serve as an alternative to the Four
Hankel transform method, but does not have its limitatio
The method is efficient and computationally cheap and
particularly well suited for transforming projections obtain
in photoion and photoelectron imaging experiments. It c
be used for any image with cylindrical symmetry, requir
minimal user’s input, and provides a reliable reconstruct
in certain cases when the Fourier–Hankel transform met
fails.

The method is based on representing theimage as an
expansion in a well-behaved basis set in the imager, z space,
and using Eq.~2! to generate the basis in the projectio
space. The latter will be smooth because the forward A
integral~2!, in contrast to the expression for the inverse Ab
transform~3!, is a well-behaved operation. In order to avo
any numerical instability, it is desirable to evaluate the tra
forms analytically, which implies certain restrictions on t
choice of the basis. We call this method the basis set exp
sion ~BASEX! Abel transform method for image reconstru
tion. We show how by using a suitable basis set, we con
the ill-posed inverse problem into a simple problem of fin
ing expansion coefficients, a procedure that requires o
matrix multiplication. We also demonstrate that the n
Downloaded 01 Apr 2009 to 128.125.134.30. Redistribution subject to A
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method works well in situations that cannot be handled
the regular Fourier–Hankel method.

The article is organized as follows. Section II gives
general description of the method along with a description
the specific basis set used in our work. Section III dem
strates the performance of the new method and compar
with the Fourier–Hankel method, for which two differen
codes were used: the first was developed by Strickland
Chandler,15 and the second is based on the algorithm giv
by Whitaker in Ref. 1. We end by discussing in Sec. IV t
advantages of the BASEX method and some possible m
fications and extensions.

II. DESCRIPTION OF THE METHOD

A. BASEX: The basis set expansion method for an ill-
posed inverse problem

Consider a set of 2D functions in the image spa
$ f k(r ,z)% (k50,...,K21) to be specified later, and the co
responding transformed set of vectors$GkPRNx3Nz% (k
50,...,K21) defined in the projection space. The two se
are assumed to be related via Eq.~2!:

Gki j52E h~x2xi ,z2zj !dx dzE
uxu

` r f k~r ,z!

Ar 22x2
dr. ~4!

We further assume that both sets are well-behaved and
particular, form good bases, so we can use the expansio

I ~r ,z!5 (
k50

K21

Ckf k~r ,z!, ~5!

Pi j 5 (
k50

K21

CkGki j . ~6!

In the matrix form

P5CG, ~7!

with the coefficients vectorC5(C0 ,...,CK21) and the basis
transformation matrixG5(G0 ,...,GK21)T. Note that in gen-
eral, the total number,K, of basis functions may be greater o
smaller than the total number,Nx3Nz , of pixels, which then
results in, respectively, an under- or overdetermined pr
lem. In such cases the inverseG21 does not exist. A solution
of the corresponding least-squares problem can be obta
by Tikhonov regularization:16

C5PGT~GGT1q2I !21, ~8!

where I is the identity matrix andq is a regularization pa-
rameter. The regularization is used to improve the condit
number of the matrixGGT ~i.e., the ratio of the highest an
lowest singular values!, which may be ill-conditioned~have
a large condition number!, or even singular~if K.Nx3Nz!.

In principle, it would be most desirable to implement
nonseparable 2D basis of sizeK, which would require inver-
sion of theK3K matrix GGT1q2I . Unfortunately, in the
present caseK is too large~order of 105 to 106! to be handled
numerically, unless a special basis optimized for particu
images is used. However, the numerical burden can be
IP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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viated considerably by utilizing the separability of th
present problem, which allows the use of a direct-prod
basis set of sizeKx3Kz :

I ~r ,z!5 (
k50

Kx21

(
m50

Kz21

Ckmrk~r !zm~z!, ~9!

Pi j 5 (
k50

Kx21

(
m50

Kz21

CkmXkiZm j . ~10!

In the matrix form

P5XTCZ, ~11!

with

Xki52E hx~x2xi !dxE
uxu

` rrk~r !

Ar 22x2
dr,

~12!

Zm j5E hz~z2zj !zm~z!dz.

A solution of Eq.~11! is given by

C5APB, ~13!

with A5(XXT1q1
2I )21X and B5ZT(ZZT1q2

2I )21. Be-
cause the matricesA andB do not depend on the data matr
P, they could be computed once and then restored fro
disk whenever needed. The overall numerical cost of
image reconstruction is, therefore, defined only by a few m
trix multiplications.

Clearly, the two transformations in Eq.~13! are com-
pletely independent. The way the transformation along thz
axis is implemented is not of crucial importance as its o
purpose is to smooth the image and incorporate certain
straints, such as symmetry,I (r ,z)5I (r ,2z).

B. The choice of basis set

Any basisrk(r ) would suffice as long as it can be an
lytically integrated@cf. Eq. ~12!# and is uniform, i.e., can
account for sharp features of the size of one pixel and
smooth on a smaller scale. Our choice, which satisfies th
criteria, is

rk~r !5~e/k2!k2
~r /s!2k2

e2~r /s!2
~k50,...,Kx21!, ~14!

where the parameters is of the order ofD, the distance
between the pixels. Furthermore, we setKx<(Nx11)/2 so
the matrixXXT is well-conditioned, i.e., it has a small con
dition number.rk(r ) has a maximum atr 5ks and is prac-
tically indistinguishable from a Gaussian function, i.
rk(r )'e22(r /s2k)2

for sufficiently largek. A set of such
functions constitutes a basis that fills the image space
formly. The integral overr in Eq. ~12! can be evaluated
analytically, leading to

Xki5E hx~x2xi !xk~x!dx,
Downloaded 01 Apr 2009 to 128.125.134.30. Redistribution subject to A
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xk~x!52srk~x!F11(
l 51

k2

~x/s!22l

3 )
m51

l
~k2112m!~m21/2!

m G . ~15!

Figure 1 shows plots ofrk(r ) for k50, 5, and 10~upper
panel! and the corresponding projectionsxk(x) ~lower panel!
for s51. ~Note that even thoughrk(r ) needs to be defined
for r>0, we show it in the@2`, 1`# range, as this function
is also used to represent thez andx dependencies.! The latter
are symmetric functions,xk(x)5xk(2x), which are also
highly peaked with maxima atx'6ks. Sincerk(r ) already
includes some broadening, the use of an instrumental fu
tion will hardly make a difference in the results. Therefo
for simplicity, we assumehx(x)5d(x), which gives Xki

5xk(xi).
To reduce the number of adjustable parameters, the b

zm(z) along thez axis is chosen equivalent to that for ther
variable, i.e., we usezm(z)5rm(z) with Zm j5rm(zj ) (m
50,...,Kz21). Sincezm(z)5zm(2z), this also incorporates
the symmetry constraint. IfKz<(Nz11)/2, the matrixZZT

is well-conditioned and has an additional smoothing effe
In our current application withNx5Nz51001, we use two

FIG. 1. Examples of basis functionsrk(r ) ~top panel! and the correspond-
ing projectionsxk(x) ~bottom panel! for k50, 5, and 10 ands51.
IP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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2637Rev. Sci. Instrum., Vol. 73, No. 7, July 2002 Reconstruction of Abel-transformable images
types of basis sets depending on the measured projectio~i!
Kz5Kx5226, s52, q1

2550, q2
250 and ~ii ! Kz5Kx5251,

s51, q1
255, q2

250. ~Note that the valueq1
2550 is very

small compared to the average value of the matrix elem
of XXT.! An efficient algorithm for the numerical evaluatio
of the functionsrk(r ) andxk(x) is given in the Appendix.

III. RESULTS

A. Performance of the BASEX Abel-transform method
with synthetic images

The performance of the BASEX method with the ba
sets described above was first tested in reconstructing a
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thetic image from its noise-free projection@calculated by nu-
merical evaluation of the Abel integral~1!#, and comparing
the results with those obtained with the Fourier–Han
transform. The model image contains structures most c
monly observed in velocity map imaging experiments. So
of these structures, such as high-intensity rings near the
ter and narrow rings with very sharp edges superimposed
a low-intensity broad feature in the central region, cau
problems when reconstructed with the Fourier–Hankel tra
form. Also note that the narrow rings have different angu
distributions, while the broad central feature is isotropic.

The mathematical expression for the model image is
I ~R,u!52000~7e@~R210!2/4# sin2 u13e@~R215!2/4#15e@~R220!2/4# cos2 u!1200~e@~R270!2/4#12e@~R285!2/4# cos2 u

1e@~R2100!2/4# sin2 u!150~2e2@~R2145!2/4# sin2 u1e@~R2150!2/4#13e@~R2155!2/4# cos2 u!120e2@~R245!2/3600#, ~16!
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whereR is the distance from the center of the image andu is
the angle betweenR and the axis of symmetry~vertical axis!.
These coordinates are related tor, z, such thatr 5R sinu and
z5R cosu. Figures 2~a! and 2~b! show a 2D cut of the syn
thetic image in two different brightness scales to emphas
respectively, the high- and low-intensity parts of the imag

Figures 3~a! and 3~b! present 2D cuts of the recon
structed images obtained by using the BASEX method
the Fourier–Hankel transform, respectively. Figures 3~c! and
3~d! show the same images with emphasized low-inten
regions. As seen in Figs. 3~b! and 3~d!, even in this noise-
free case, the Fourier–Hankel transform method produ
artificial structures, evident most prominently close to t
center of the image. These structures, however, affect
only the central part of the reconstructed image but
spread throughout the entire image area. The BAS
method @Figs. 3~a! and 3~c!# does not generate artificia
structures and treats successfully signals of both low
high intensities. We have also used the BASEX method
reconstructing synthetic images with extremely high inte
sity at the center, a situation for which the regular Fourie
Hankel transform fails completely. Even for this difficu
case, the new method produces high quality images.

A different perspective is shown in Fig. 4. The upp
panel shows the generated speed distributions

P~v !5
1

Pmax
E

0

p

I ~v,u!v2 sinudu, ~17!

i.e., the signal integrated over angle at each particular ra
R. Here, (Pmax)

21 is the normalization constant, and the pa
ticle speed is given byv5kR ~k is chosen to be unity for
simplicity, so that ~v,u! corresponds to~R,u! as defined
above!. Two different approaches were used in deriving t
speed distribution. In the first approach it was obtained
using the approximate equation,
e,
.

d

y

es
e
ot
e
X

d
n
-
–

us
-

e
y

P~v !'
1

Pmax
(
n50

v

I S v,
pn

2v D v sinS pn

2v D , ~18!

where v51,...,vmax, and I (v,pn/2v) is calculated as a
weighted average of four surrounding points on the imag

Additionally, in the BASEX method, the basis function
could be integrated analytically using Eq.~17!, and therefore
the speed distribution is given by theexactequation

P~v !5
1

Pmax
(
k50

Kx21

(
m50

Kz21

v2CkmbkmRm21k2~v !, ~19!

where Ckm are the expansion coefficients,bkm5$(k2

1m2)k21m2
/@(k2)k2

(m2)m2
#%*21

1 (12t2)k2
(t2)m2

dt, and
Rn(v)5(e/n)nv2ne2v2

. The coefficientsbkm are evaluated
numerically. The two approaches were found to produ
similar speed distributions, with the distribution obtain
with Eq. ~19! having a slightly better resolution.

The lower panel of Fig. 4 shows the differences betwe
the speed distribution computed for the synthetic image
those obtained from the two reconstructed images show
Fig. 3. The solid line shows the difference with the distrib
tion obtained using the BASEX method, and the dotted l
is the corresponding difference for the Fourier–Hankel tra
form method. The speed distribution obtained for the ima
reconstructed using the BASEX method essentially coinci
with the one obtained directly from the synthetic image. T
speed distribution extracted using the Fourier–Han
method has a poorer resolution due to contributions from
reconstruction artifacts. Since these artifacts have intens
comparable to those of the broad central ring, the latte
hard to identify.

The difference between the two methods is even m
pronounced in the angular distributions, which are charac
ized by the anisotropy parameterb,17 given by
IP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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P~u!}
1

4p
@11b•P2~cosu!#. ~20!

As shown in Fig. 5, while theb(v) values extracted
from the image reconstructed using the BASEX method
identical to those of the synthetic image, the values obtai
by using the Fourier–Hankel transform exhibit large dev
tions, especially in regions where the signal intensity is lo
For example, while the broad feature underlying the mid
cluster of three sharp peaks hasb50, the Fourier–Hanke
method gives large negative values.

B. Reconstruction of experimental images

The BASEX method was also applied to the reconstr
tion of 3D images from experimentally obtained projectio
that cover a large dynamic range and display different ty
and levels of noise. As input, we used projections obtaine
our own experiments by monitoring photofragment ions,
well as those sent to us by other investigators. We had
problem analyzing any Abel-transformable image that co
be inverted by another method, such as those describe
Sec. I.

Here we discuss two examples. The first is an ima
obtained by resonantly enhanced multiphoton ionization

FIG. 2. ~Color! ~a! A synthetic image plotted in false-color scale~shown
with the corresponding numerical scale!. ~b! Same image plotted on a dif
ferent color scale that emphasizes the low-intensity parts.
Downloaded 01 Apr 2009 to 128.125.134.30. Redistribution subject to A
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tection of Cl(2P3/2) photofragments obtained in the photodi
sociation of the CH2Cl radical at 266 nm.18 The recon-
structed image should exhibit a high-intensity narrow ri
with b>21 located at a large distance from the center, f
lowed by additional, lower-intensity rings at larger rad
These rings correspond to dissociation of ground state
vibrationally excited~‘‘hot band’’! CH2Cl radicals. The ex-
perimental image contains, however, additional ion sign
not related to the dissociation of CH2Cl at 266 nm. These
signals include:~i! a bright central spot arising from Cl at
oms with no translational energy produced by pyrolysis
the radical source along with CH2Cl; ~ii ! a broad distribution
of low-speed Cl atoms, which are likely produced by pho
dissociation of species in the beam other than CH2Cl; and
~iii ! Cl atoms with a very broad speed distribution arisi
from the photodissociation of CH2Cl by the probe laser
~235.34 nm!. In addition to these background signals, t
experimental image, which is of low overall intensity, in
cludes non-Abel-transformable statistical noise. In order
observe the signal of interest on top of the large backgro
signals, it is crucial that the reconstruction algorithm rema
stable with respect to noise and achieves the highest res
tion in separating the contributions from the outer ‘‘h
band’’ rings.

Figures 6~a! and 6~b! show 2D cuts of the images recon
structed from the experimental projection using the BASE
and Fourier–Hankel methods, respectively, and Fig. 7 sh

FIG. 3. ~Color! ~a! 2D cut of the image reconstructed from the projection
the synthetic image shown in Fig. 2 by using the BASEX method a
plotted on the same scale as in Fig. 2~a!. ~b! 2D cut of the image recon-
structed using the Fourier–Hankel method~Ref. 15!. ~c! and ~d! show the
same images as in~a! and ~b!, respectively, but plotted on the scale of Fi
2~b!.
IP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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FIG. 4. Top panel: Speed distributions obtained from the synthetic im
~solid line!, the image reconstructed using the BASEX method~dashed
line!, and the Fourier–Hankel method~dotted line!. Notice that the solid and
dashed curves coincide. Bottom panel: The differences between the s
distributions obtained for the image reconstructed using the BASEX me
and the synthetic image are shown by the solid line, and the correspon
differences between the Fourier–Hankel method and the synthetic imag
shown by the dotted line.

FIG. 5. Anisotropy parameter,b(v), distributions for the synthetic image
~solid line!, image reconstructed using the BASEX method~solid squares;
indistinguishable from the synthetic image values!, and image reconstructe
using the Fourier–Hankel method~open circles connected by line!.
Downloaded 01 Apr 2009 to 128.125.134.30. Redistribution subject to A
the corresponding speed distributions. Evidently, the n
method is superior in terms of treating the noise and
achievable resolution~see in particular the region of pixel
80–120!.

As a second example, we show an experimental pho
ion image~projection! obtained by monitoring O1 ions from
the dissociative photoionization of O2 @Fig. 8~a!#.19 This pro-
jection was obtained by using the event-counting techniq
In this method, detection of a single electron or ion follow
by thresholding~disregarding signals with intensities small
than a specified threshold value! and centroiding~finding the
exact position of the ‘‘center of mass’’ of the spot from ea
electron or ion! gives increased resolution and eliminat
noise produced by the data acquisition system. However,
cause of the necessity to work at low signal levels, su
images possess a high level of statistical noise, i.e., they
have large point-to-point fluctuations in the signal. This is
contrast with multiple-ion detection schemes, which usua
produce smooth and continuous images. In order to rec
struct such images, some type of smoothing of the exp
mental projection is usually needed~e.g., broadening of each
spot of the projection by a Gaussian function prior to reco
struction, combining several adjacent pixels, etc.!. This
smoothing procedure may result in some distortion of
true image. It is noteworthy, therefore, that the BASE
method can handle images with large point-to-point fluct

e

ed
d
ng
are

FIG. 6. 2D cuts of images reconstructed from an experimental projec
obtained by monitoring Cl(2P3/2) produced by 266 nm photodissociation o
CH2Cl and detected at 235.34 nm by using~a! the BASEX (s51) and~b!
the Fourier–Hankel method~Ref. 15!. The intensity scale was chosen t
allow observation of the faint outer rings.

FIG. 7. Speed distributions obtained from the Cl(2P3/2) images shown in
Fig. 6 reconstructed using the BASEX~solid line! and Fourier–Hankel~dot-
ted line! methods.
IP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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2640 Rev. Sci. Instrum., Vol. 73, No. 7, July 2002 Dribinski et al.
tions without prior smoothing, and still exhibit very goo
resolution.

Shown in Fig. 8~b! is a 2D cut of the photoion imag
reconstructed from the projection in Fig. 8~a! by using the
BASEX method without prior smoothing of the data. In o
der to obtain a reliable reconstruction of this image with
Fourier–Hankel method, it was necessary to decrease
point-to-point fluctuations by combining every four adjace
pixels into one pixel~thereby reducing the size of the imag
by a factor of 2 in each dimension!.19 A 2D cut of the image
reconstructed in this way is presented in Fig. 8~c!. It is ob-
vious that the reconstruction quality obtained by using
BASEX method is better. Figure 9 shows the correspond
speed distributions, which demonstrate that the BAS
method is capable of reconstructing weak features adja
to intense ones~see the inset!. These weak features are pa
tially or totally obscured when using the Fourier–Hank
method because of the excessive reconstruction artifacts

IV. DISCUSSION

A. Advantages of the BASEX method

The approach presented in this article features sev
advantages over the other methods commonly used for
construction of 3D, cylindrically symmetric images fro
their projections. First, for synthesized noise-free proj

FIG. 8. ~Color! ~a! Experimental image~projection! obtained by monitoring
O1 from the dissociative photoionization of O2 ~multiphoton at 225.02 nm!
using the single ion counting technique~Ref. 19!. ~b! 2D cut of the image
reconstructed from the experimental projection using the BASEX met
(s52), without prior smoothing of the data.~c! 2D cut of the image recon-
structed using the Fourier–Hankel method~Ref. 1! after smoothing the ex-
perimental data by combining every four pixels of the image into one pi
Downloaded 01 Apr 2009 to 128.125.134.30. Redistribution subject to A
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tions, the BASEX method reconstructs an essentially ex
and artifact-free image. This is in contrast to methods suc
Fourier–Hankel, ‘‘onion peeling,’’ or iteration, which ca
converge to the exact solution only in the case of a conti
ous projection. In order to reconstruct the distribution from
discrete projection, these methods use interpolation pro
dures, thereby introducing additional errors or assumptio

Second, the BASEX method is computationally che
as it requires only matrix multiplications, while the basis s
are generated and stored on a disk prior to image recons
tion. More precisely, for each basis set, the correspond
matrix needs to be calculated only once and stored in a s
rate file, which is called when reconstructing the experim
tal images. For example, on a computer with a Pentium
300 MHz processor, reconstruction of the images with ba
sets of 2263226 or 2513251 functions takes 1 to 2 min
with no effort to optimize the time performance.

Third, since the basis set used in the current work c
sists of functions that are localized and cover the space
formly ~see Sec. II B and Fig. 1!, the reconstruction proce
dure does not accumulate noise in any specific region of
reconstructed image. Noise in the image appears only w
it exists in the projection; it is not generated by the invers
procedure. However, it is important to realize that each po
of the original 3D image, located at a distancer 0 from the
axis of cylindrical symmetry, contributes only to points wi
x<r 0 in the projection@this can be easily seen from Eq.~1!#.
Thus the projection contains less information about regi
of the image closer to the symmetry axis compared to th
farther from the axis. In particular, only thex50 points in
the projection contain information about the center-line (r 0

50) of the original image, while information about poin
with r 05r max is contained in every point of the projection
Since the noise is usually distributed evenly throughout
measured projection, the signal-to-noise ratio in the rec
structed image decreases towards the centerline. This is
pecially noticeable in images reconstructed with the Fourie

d

l.

FIG. 9. Speed distributions obtained from the images shown in Fig. 8,
constructed by using the BASEX~solid line! and the Fourier–Hankel~dot-
ted line! method. The inset demonstrates the presence of low-intensity p
~e.g., at pixels 95, 115, 190, and 220!, which are revealed by the BASEX
method, but are almost totally obscured by the noise generated in
Fourier–Hankel method.
IP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp
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Hankel method. Employing Tikhonov regularization in th
BASEX method enables us to reduce significantly this c
terline noise without affecting the reconstruction quality.

Fourth, the resolution in the reconstructed image is
perior to that obtained with the Fourier–Hankel method, p
ticularly for noisy projections. The reason is that the ba
functions used are sufficiently narrow, and thus are capa
of reproducing even the sharpest features obtained with
rent imaging technology. Note, however, that since
Gaussian basis set was specifically constructed for ima
that have a well-defined center, centering the image is cru
for obtaining maximum resolution; e.g., a deviation of ev
one pixel from the center causes a decrease in resolutio
fact, this feature can be used to find the exact center of
image.

Fifth, the image reconstructed using the BASEX meth
has an exact analytical expression and thus allows an
lytical calculation of the speed distribution, which gives
better-resolved speed distribution than the one obtained f
the discrete image in other methods. This is achieved with
increasing the computation time.

B. Improvements and extensions

The reconstruction algorithm described in this article
flexible and allows modifications that can further improve
performance in specific applications. The Gaussian basis
used in the present work does not assume any special p
erties of the image, except the existence of cylindrical sy
metry. It is thus most appropriate for general applicatio
without requiring input from the user. However, for partic
lar sets of problems, special types of basis sets contai
functions with properties resembling those of the rec
structed images can be used without loss of fidelity. This
reduce the number of basis functions needed to describe
image and may improve the quality of the fit.

In addition, although Tikhonov regularization was foun
to provide considerable improvement in the quality of t
reconstruction near the symmetry axis for all images p
cessed, other regularization techniques20 may be found to be
more efficient in treating noisy signals in specific cases.

The method has been used successfully by the autho
analyze a wide variety of images, and the code and exam
are available upon request.21
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APPENDIX

In the numerical evaluation ofrk(r ) and xk(x), prob-
lems may be encountered when dealing simultaneously w
extremely large and small numbers. In addition, the calcu
tion of xk(x) can be time-consuming since, according to E
~15!, the number of terms in the summation increases ask2.
Below we describe a procedure to overcome these diffic
ties.

Let us define the function

Rn~u!5S e

nD n

u2ne2u2
~A1!

5expFn2u21n lnS u2

n D G . ~A2!

With this notation,rk(r )5Rk2(r /s). Expression~A2! can be
used to evaluateRn(u) at anyu. Note that the argument o
the exponent isn2u21n ln(u2/n)<0 and is exactly zero a
u5An. Furthermore, to a very good approximation,Rn(u)
'e22(u2An)2

, which can be seen by expanding the logarith
in a Taylor series aroundu5An:

lnS u2

n D5 lnS 11
u22n

n D'
u22n

n
2

~u22n!2

2n2 5
u22n

n

2
~u2An!2~u1An!2

2n2 '
u22n

n
2

2~u2An!2

n
.

ThereforeRn(u) is essentially zero outside some small inte
val aroundu5An and needs to be computed only inside th
interval.

The Abel transform ofRn(u) is given by

Xn~u!52gn(
l 50

n
a l

gn2 l
Rn2 l~u!, ~A3!

with

g l5~e/ l ! l l !,

and

a l5 )
m51

l S 12
1

2mD ,

for l .0 anda051.
Because the coefficientsa l andg l are of the order of one

for any l, Eq. ~A3! is suitable for numerical evaluation an
can be used to computexk(x)5Xk2(x/s). Furthermore, for
any particularu only a few terms withn2 l;u2 contribute to
the sum in Eq.~A3!. This makes the calculation ofxk(x)
very fast.
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