FEATURE ARTICLE

Spectroscopy and Dynamics of Fast Evolving States

C. X. W. Qian,† A. Ogai, J. Brandon, Y. Y. Bai, and H. Reisler*

Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482

(Received: April 22, 1991)

This article describes several aspects of the spectroscopy and dynamics of photodissociating molecules. In particular, we report both experimental studies and theoretical models relating to the mapping of transition-state wave functions into fragment rotational distributions. A modified Franck-Condon model is described in detail for cases of modest exit-channel torques, and is applied to the dissociation of CINO(T1), where several bending progressions are identified in the T1 dissociative state. The mapping of the wave functions in the case of large exit-channel torques are demonstrated in the dissociation of CINO(S1) and FNO(S1). Favorable cases for mapping of parent ground- and excited-state bending wave functions into product distributions are then identified. We also describe the spectroscopic assignments of dissociative states of CINO. Photofragment yield spectra, NO energy distributions and vector properties are used, as well as results of ab initio calculations of singlet and triplet excited states and oscillator strengths. It is concluded that definitive assignments are now possible for dissociative spectra of many small polyatomic molecules. The adiabatic evolution of NO stretch excitation into NO vibration in the dissociation of CINO on T1 and S1 is also briefly described. The interplay between theory and experiment is emphasized throughout.

1. Introduction

Photodissociation dynamics is a mature and popular field that still attracts considerable attention owing to the obvious simplifications inherent in "half-collision" processes, and the relative ease with which products are detected state-selectively. These simplifications have led to a large body of work on many molecules and no single review today can cover the field in its entirety. The initial enthusiasm generated by the simplicity of half-collision processes (as compared with the "full collisions" of reactive encounters) soon gave way to a realization that the ensuing dynamics is intimately dependent on the details of a particular potential energy surface (PES) that each molecule becomes a "subspecialty". If the photodissociation dynamics depends strongly on the details of each molecular PES, there is little hope of finding trends that can be described by general theories.

Fortunately, the abundant experimental and theoretical output resulted in some general trends that govern exit-channel interactions. In particular, work on molecules such as H2O,1,2,3 HONO,4,4 RONO (R = alkyl),1,4,7 and XCN (X = Cl, Br, I)4,8,9 led to formulations of models that describe product rotational and vibrational excitations, while work on CH3/X (X = I, Br)1,10,11 XCN,1,12 and HN31,14 has highlighted the importance of surface crossings and conical intersections and their influence on product state distributions. Today, owing both to experimental and theoretical developments, it is possible to design experiments that probe fundamental issues using prototypical molecules, and compare them with quantum mechanical and classical dynamical calculations on multidimensional potential energy surfaces (PES) calculated ab initio. Triatomic molecules have traditionally served as benchmarks for testing ideas and theories, since the internal excitations of the diatomic fragment can be interrogated with great precision, and good ab initio calculations of the PES's are feasible in many cases.

The purpose of the present article is to highlight two aspects of photodissociation dynamics as recently demonstrated in our work. First, we will show how, with a combination of measured scalar and vector properties of the fragments and ab initio calculations of the parent PES's, it is possible to assign definitively dissociative spectra that lack traditional rotational and vibrational structure. Moreover, with optimized ab initio calculations, avoided crossings and conical intersections along the reaction coordinate can be identified, as well as changes in the excited-state geometry

1 Present address: Laser Chemistry Group, Stacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada.
during the dissociation. Two molecules may well represent two extreme cases: in CINO, each repulsive PES evolves independently to products, whereas in CICN, several electronic configurations give rise to a dense manifold of electronic states and many opportunities for surface crossings along the Cl-C reaction coordinate exist. Here, we will describe some of our studies on CINO, while the CICN results are reported elsewhere.

A second aspect emphasized here is the generation of torque that leads to rotational excitation in photoproducts. In particular, we will describe in detail the mapping of parent transition-state bending wave functions into fragment rotational excitations recently observed in our laboratory. In general, the influence of parent internal excitations on product state distributions receives less experimental attention, since it is not easily probed. For example, when investigating the role of vibrational excitation in the upper electronic state, we rely on a serendipitous matching of timings—the molecule in the electronically excited state must live long enough to support a vibrational structure, while this time should be sufficiently short (i.e., "photodissociation) to preserve the relationship between features of the excited PES and the subsequent dynamics. The nitrosyl halides exhibit a diffuse vibrational structure in their lowest electronic transitions, even though the upper states are repulsive and are therefore good candidates for these studies.

In direct dissociation of polyatomic molecules, parent bending vibrations usually evolve into fragment rotational excitations; however, this transformation is often mediated by the torques generated on the repulsive surface during dissociation. Thus, models need to be developed that provide physical insight into the relative importance of angular momentum sources. As usual, we do best in limiting cases, and early on two models describing different sources of torque that are independent of these details of the PES were developed. The Franck-Condon (FC) model of photodissociation was developed for those cases where parent vibrations are the only source of angular momentum. In these cases the parent bending vibrations were expanded in terms of free-rotor wave functions of the fragments, subject to angular momentum couplings and conservation laws. The price of the exact treatments of angular momenta, however, was a set of complicated final equations from which the physics was not always apparent. At the other extreme is a situation where the most important source of torque is the impulsive force generated in the photoexcitation. For such a situation, a simple impulsive model was developed which assumed that the impulse is directed along the breaking bond, and no other sources of angular momenta are important. As shown recently by Schinke, the impulsive model implies an evolution on a PES where the initial angular momentum is not modified along the reaction coordinate during dissociation.

Thus, the FC and impulsive models are limiting cases applicable when a single source of angular momentum is dominant (i.e., the bending vibration or the impulsive force, respectively), and the shape of the PES is unimportant. These models are useful, because they provide reference rotational distributions with which the experimental distributions can be compared, but they do not provide the more realistic models that experimentalists need. To this end, Schinke developed a model termed the rotational reflection principle, which is highly successful when a large impulsive torque is dominant, whereas we used a modified FC model to deal with situations where exit-channel torques are nonnegligible, but nevertheless modest compared with the torques inherent in the parent bending wave functions. Of course the best and most rigorous approach involves exact close-coupling quantum-mechanical calculations on realistic three-dimensional PES's calculated ab initio. Such calculations, in principle, take into account all the forces and torques that influence fragment rotations. However, the physics is not always transparent, and in addition, accurate PES's are not readily available, and the calculations can be quite time consuming when many channels are open.

This article is organized as follows. We first discuss how we assigned the dissociative electronic spectrum of CINO, and the implications of these assignments to the photodissociation dynamics. We then discuss in detail the mapping of bending wave functions into product rotational states when the bending wave function is the dominant source of torque, and describe the modified FC model and its application to the photodissociation of CINO(T1). We use the dissociation of CINO on S1 as an example of direct dissociation involving large exit-channel torque which is nicely described by exact quantum mechanical and classical dynamical calculations. We conclude by demonstrating that transition-state wave functions can be mapped into product rotational distribution even in the presence of a large exit-channel torque (e.g., FNO(S1)), and commenting on the general applicability of the models.

2. Spectroscopy of Dissociating States of CINO

The broad band, structureless electronic spectrum of CINO, which was obtained in 1939 by Goodeve and Katz (Figure 1), illustrates the difficulty in assigning the transitions of dissociating states. Goodeve and Katz named the peaks A-K in the order...

<table>
<thead>
<tr>
<th>symmetry</th>
<th>MO</th>
<th>eigenvalue, au</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'</td>
<td>18</td>
<td>0.0704</td>
<td>Cl p_x + NO p_y*</td>
</tr>
<tr>
<td>a'</td>
<td>17</td>
<td>0.0409</td>
<td>NO p_y*</td>
</tr>
<tr>
<td>a'</td>
<td>16</td>
<td>-0.4245</td>
<td>Cl p_y + O p_z</td>
</tr>
<tr>
<td>a'</td>
<td>15</td>
<td>-0.4516</td>
<td>Cl p_y</td>
</tr>
<tr>
<td>a''</td>
<td>14</td>
<td>-0.4520</td>
<td>Cl p_y</td>
</tr>
<tr>
<td>a'</td>
<td>13</td>
<td>-0.7323</td>
<td>NO p_y</td>
</tr>
</tbody>
</table>

*From ref 15.

Figure 1. The absorption spectrum of 300 K CINO as measured by Goodeve and Katz (ref 28). The lowest absorption band, denoted here the E band, corresponds to a series of diffuse bands (see inset) labeled E-K in ref 28.
TABLE II: Vertical Excitation Energies and Oscillator Strengths for CINO

<table>
<thead>
<tr>
<th>state</th>
<th>primary excitation</th>
<th>(E_{\text{ratio}}) eV</th>
<th>(E_{\text{exp}}) eV</th>
<th>(f_{\text{calc}})</th>
<th>(f_{\text{exp}})</th>
<th>band</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_0(1'A'))</td>
<td>17u' ← 16a'</td>
<td>0.0</td>
<td>2.06</td>
<td>0.0</td>
<td>(1 \times 10^{-5})</td>
<td>E</td>
</tr>
<tr>
<td>(T_1(1'I'))</td>
<td>17u' ← 16a'</td>
<td>1.75</td>
<td>2.64</td>
<td>2 (\times 10^{-4})</td>
<td>(9 \times 10^{-5})</td>
<td>D, C</td>
</tr>
<tr>
<td>(S_1(1'A'))</td>
<td>17u' ← 16a'</td>
<td>2.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_2(2'I'))</td>
<td>17u' ← 14a'</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_2(2'A'))</td>
<td>17u' ← 15a'</td>
<td>3.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_0(4'A'))</td>
<td>17u' ← 16a'</td>
<td>3.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_0(3'A'))</td>
<td>17u' ← 14a'</td>
<td>3.70</td>
<td>3.72</td>
<td>1 (\times 10^{-1})</td>
<td>(1 \times 10^{-3})</td>
<td>B</td>
</tr>
<tr>
<td>(S_1(3'A'))</td>
<td>18a' ← 15a'</td>
<td>4.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_0(3'A'))</td>
<td>18a' ← 15a'</td>
<td>4.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_0(4'A'))</td>
<td>18a' ← 16a'</td>
<td>7.18</td>
<td>6.30</td>
<td>1.0</td>
<td>0.5</td>
<td>A</td>
</tr>
</tbody>
</table>

From ref 15; energies relative to 1'A' \(E_{\text{exp}} = -589.153392 \) au at the experimental equilibrium geometry; \(r_{\text{NO}} = 1.975 \) Å, \(r_{\text{NO}} = 1.13 \) Å, \(\angle_{\text{CINO}} = 113.3^\circ $. E \(\text{exp} \) is defined as the peak of the absorption band. *The experimental oscillator strengths were calculated from the spectra and extinction coefficients given in ref 28.

Figure 2. A pictorial view of the relevant occupied and unoccupied orbitals involved in the electronic transitions of CINO. A fuller description of each orbital is given in Table I.

of increasing wavelength and were able, by inspection, to make suggestions on possible assignments, some of which eventually proved to be correct. For example, they proposed that the lowest, weak absorption peaks labeled E–K (see inset in Figure 1) belong to a single electronic transition and that this transition, due to its weakness, may be forbidden. In order to assign the electronic spectrum we used vector and scalar properties of the fragments and also carried out ab initio calculations on the low-lying states of CINO.$^1.$15 Our calculations were more complete than previous ones29 in that we included triplet states, calculated oscillator strengths, and carried out more complete explorations of the PES's along the reaction coordinate.

The experimental ground-state equilibrium geometry of the bent CINO is \(r_{\text{NO}} = 1.13 \) Å, \(r_{\text{CNO}} = 1.975 \) Å, and \(\angle_{\text{CINO}} = 113.3^\circ $. CINO has 18 valence electrons, and 16 molecular orbitals are occupied in the ground state. In our coordinate system, the y axis is along the NO bond, and Cl lies in the xy plane. At infinite separation, NO possesses doubly degenerate \(\pi \) and \(\pi^* \) molecular orbitals that may be viewed as lying in the \(x \) and \(z \) directions. The molecular orbitals (MOs) which are principally involved in the excited states are summarized in Table I, and a pictorial view is given in Figure 2.15 The highest occupied MOs, 14–16, are predominantly the three Cl p orbitals which are degenerate in the atom and nearly degenerate in CINO. Excitations from these to MO 17, which is predominantly of NO \(\pi^* \) character, lie close to each other in energy and this accounts for the richness of the spectrum below 4 eV.

The calculated vertical excitation energies and the electric dipole oscillator strengths are summarized in Table II.15 The lowest excited states all involve some degree of charge transfer from Cl to NO.15 The dynamics of the photofragmentation of CINO to Cl(\(\text{Pp}_{1,2}/2,3/2 \)) and NO(\(\text{Pp}_{2,3}/2,3/2 \)) depends upon the nature of the three-dimensional PES upon which dissociation takes place. Therefore, the calculated least energy paths for a number of electronic states, where \(r_{\text{NO}} \) and the CINO angle are optimized as a function of \(r_{\text{ClNO}} \), are shown in Figure 3.15

As seen in Table II, we assign the lowest energy absorption system to the \(T_1 \rightleftharpoons S_0 \) transition, and both the D and C bands to the \(S_1 \rightleftharpoons S_0 \) transition. We emphasize that without the interplay between theory and experiment, it would have been impossible to propose definitive assignments for the dissociative transitions. Below, we discuss some of the considerations that led to the spectroscopic assignments of the lowest triplet and singlet states. The assignments of the other transitions are described elsewhere.15,24

On the basis of its vertical excitation energy and oscillator strength, we assigned the D absorption band to the \(S_1(1'I') \rightleftharpoons S_0(1'A') \) transition. The Doppler profiles of selected NO rovibronic bands following excitation in the D band are shown in the middle panel of Figure 4, and indicate that \(\mu \) is perpendicular to \(\nu (\nu \cong 1)$. The rotational alignment parameter indicates that the transition is of a perpendicular nature, with \(\mu \) perpendicular to the molecular plane, thereby establishing the symmetry of the upper electronic state as \(A' \).15,33,34 The NO(\(\text{Pp}_{2,3}/2 \)) \(\Delta \)-doublet populations, which yield \(\Pi(A') > \Pi(A) \), are consistent with this assignment, since excitation is predominantly to MO 17 whose symmetry is \(a'' \), as is the overall symmetry of the transition.

More intriguing is the assignment of the C band to the same electronic transition as the D band. This assignment was proposed by us based solely on experimental observations of scalar and vector properties of the NO fragment.15 For example, NO pro-

vibration. Recently, this assignment has been confirmed by exact dynamical calculations on a three-dimensional system. This affects the Doppler profiles only through the parallel transition. The lasers configuration in all the panels except (b) is \(k_p \perp \Delta k_p \). In panel (b), \(k_p \parallel \Delta k_p \) was employed. This affects the Doppler profiles only through the \(v^J \) correlation, and has only a small effect on the line shape.

duced via photoysis in both the D and C bands exhibits similar Doppler profiles, degree of rotational alignment, \(A \)-doublet propensities, and rotational distributions, provided \(NO(\nu^J=0) \) is monitored with D band excitation, and \(NO(\nu^J=1) \) is monitored following excitation in the C band. Moreover, the two peaks are separated by \(1500 \text{ cm}^{-1} \), which is typical of molecular NO stretch vibration. Recently, this assignment has been confirmed by exact dynamical calculations on a three-dimensional system. The calculations show two peaks identical with the D and C absorption bands observed with jet-cooled samples (Figure 5). The calculations also predict that excitations in the D and C bands yield NO in \(\nu^J = 0 \) and 1, respectively, as observed experimentally. Thus, the bands labeled D and C in the original spectrum (i.e., those peaking at \(\sim 472 \) and \(440 \text{ nm} \)) arise from the \(S_1(1^I A') \rightarrow S_0(1^I A') \) transition terminating in the (000) and (100) \(S_0 \) levels, respectively.

We now turn our attention to the series of weak bands designated E-K in ref 28 (i.e., the E band), which we assign as the \(T_1(1^I A') \rightarrow S_0(1^I A') \) transition. With excitation in the E band, the recoil anisotropy parameter is typical of a parallel transition, as can be seen clearly by comparing the Doppler profiles displayed in the upper panel of Figure 4 with those of the B band (lowest panel), which is known to involve a parallel transition. The rotational alignment parameter also implies that \(\mu \) must lie in the molecular plane. The oscillator strength, however, is quite small, and Goodeve and Katz already suggested that it may involve a forbidden transition. We assign this transition to spin-orbit coupling between the \(T_1(1^I A') \) state and higher lying and strongly absorbing singlet states of \(A' \) symmetry. By calculating the first-order mixing coefficients between the \(1^I A' \) state and singlet states of \(A' \) symmetry, we find that the observed oscillator strength of the \(T_1 \rightarrow S_0 \) transition (\(\sim 10^{-5} \)) can be accounted for by intensity borrowing from the strong (\(J \sim 0.5 \)), parallel \(S_1(4^I A') \rightarrow S_0(1^I A') \) transition (i.e., the A band). We emphasize that although mixings with singlet states are responsible for the oscillator strength and thus determine the values of \(\beta \) and \(A_2(2) \) only \(\sim 2\% \) of the \(4^I A' \) wave function is required to yield the experimentally observed oscillator strength. Thus, the \(T_1 \) state has predominantly \(1^I A' \) character, and the \(A' \)-doublet populations indeed reflect the \(a' \) symmetry of the excited-state orbital (MO 17).

In summary, the following assignments are now favored for the electronic spectrum of CINO in the 625-180-nm-wavelength region.

1. \(T_1(1^I A') \rightarrow S_0(1^I A') \) (E band); \(\nu_I = 1500 \text{ cm}^{-1} \), \(\nu_II = 380 \text{ cm}^{-1} \). A series of weak bands with diffuse structure at \(\sim 625-500 \text{ nm} \). The transition borrow intensity by mixing with remote singlet states, predominantly the \(S_1(4^I A') \) state.

2. \(S_1(1^I A') \rightarrow S_0(1^I A') \) (D and C bands); two peaks at 472 and 440 nm, corresponding to \(\nu_I = 1350 \text{ cm}^{-1} \).

3. \(S_1(2^I A') \rightarrow S_0(1^I A') \) (B band); a strong, broad band with no discernible structure, that peaks at \(\sim 340 \text{ nm} \).

4. \(S_1(4^I A') \rightarrow S_0(1^I A') \) (A band); a very strong, broad band with no structure that peaks at \(\sim 200 \text{ nm} \). The upper state may be the \(NO^+ \text{Ct}^- \) charge-transfer state.

Better resolved spectra and additional information can be obtained from the state-specific photofragment yield (PHOFRY) spectra obtained by varying the photolysis laser wavelength while monitoring selected levels of \(NO(X^2Π) \). Several PHOFRY spectra in the \(T_1 \rightarrow S_0 \) band are shown in Figure 6 and compared with the 300 K absorption spectrum of CINO. We find that when monitoring low rotational levels in \(NO(\nu^J=0) \), only the first group of three peaks is observed, whereas monitoring \(NO(\nu^J=1) \) yields only the second group of peaks (i.e., the (000) and (100) bending progressions, respectively). The reason, of course, is that the PHOFRY spectra exhibit only those transitions that correlate with the monitored states of the photofragments. Thus, the state-specific PHOFRY spectra can reveal absorption features that are hidden or overlapped in the total absorption spectrum. This is best illustrated by the PHOFRY spectrum obtained when \(NO(\nu^J=2) \) is monitored. The 300 K absorption spectrum at 450-525 nm shows the broad and structureless \(T_1 \rightarrow S_0 \) B band. The PHOFRY spectrum obtained when \(NO(\nu^J=0) \) is monitored reproduces the absorption spectrum very well. In contrast, when \(NO(\nu^J=2) \) is monitored, only weak features, consisting of the three peaks characteristic of the bending progressions of the \(T_1 \rightarrow S_0 \) transition, appear in the PHOFRY spectrum, as seen in Figure 6. Thus the simultaneous absorption to \(S_0 \) and \(T_1 \) can be revealed only in the state-selective PHOFRY spectra. A similar situation exists in the spectral region around 430 nm, where the C and B bands overlap. The PHOFRY spectra, as well as the NO scalar...
Figure 6. The absorption and PHOFRY spectra of CINO in the region of the $T_1 \rightarrow S_0$ transition. The absorption spectrum was obtained at 300 K. The other traces show the PHOFRY spectra obtained with jet-cooled samples, and each group of three peaks was obtained by monitoring the P_{23} bandhead ($J'^{\pi} = 1.5 - 4.5$) of the NO vibrational level indicated in the figure. The first group consists of, in order of decreasing wavelength, the (000), (001), and (002) bands; the second group consists of the (100), (101), and (102) bands, and the third group consists of the (200), (201), and (202) bands. The intensity of the different groups are not normalized with respect to one another. In the 525–495-nm region, the PHOFRY spectrum obtained by monitoring NO($v'^{\pi}=0, Q_{20}(33.5)$) is much more intense than that obtained by monitoring the P_{23} bandhead of NO($v'^{\pi}=2$).

Table III: Spectroscopic Data for the $T_1 \rightarrow S_0$ and $S_1 \rightarrow S_0$ Transitions of CINO

<table>
<thead>
<tr>
<th>v_f^{π}</th>
<th>v_i^{π}</th>
<th>peak position, nm</th>
<th>ν, cm$^{-1}$</th>
<th>$\Delta \nu$(fwhm), cm$^{-1}$</th>
<th>τ, fs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>616 (615.8)</td>
<td>16230</td>
<td>290</td>
<td>18.3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>602 (601.7)</td>
<td>16610</td>
<td>331</td>
<td>16.0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>587 (587.9)</td>
<td>17040</td>
<td>157</td>
<td>33.8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>565 (561.2)</td>
<td>17700</td>
<td>262</td>
<td>20.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>553 (549.5)</td>
<td>18050</td>
<td>157</td>
<td>33.8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>540 (538.5)</td>
<td>18480</td>
<td>262</td>
<td>20.3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>519</td>
<td>19270</td>
<td>74</td>
<td>71.8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>509</td>
<td>19650</td>
<td>116</td>
<td>45.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>500</td>
<td>20000</td>
<td>201</td>
<td>26.4</td>
</tr>
</tbody>
</table>

*The numbers in parentheses are from ref 28. ν is the lifetime associated with the fwhm line width. † From ref 23. ‡ From ref 38.

and vector properties, show that in this region NO($v'^{\pi}=1$) is formed exclusively via $S_1 \rightarrow S_0$ excitation, whereas NO($v'^{\pi}=0$) is formed predominantly via $S_3 \rightarrow S_0$ absorption (Figure 5).

The absorption spectra can be converted to gradients of the potential along the R coordinate.40 Using measured line widths (Table III), we calculated the potential curves for $S_1(000)$, $S_1(100)$, $T_1(001)$, and $T_1(101)$ as shown in Figure 7. In constructing the curves we used the known energy values in the FC and asymptotic regions, and these regions are marked by heavy lines. In CINO, as a consequence of the mismatch between the parent v_1 frequency (1500 cm$^{-1}$) and the free NO vibrational frequency (~1900 cm$^{-1}$), the curves in S_0 and T_1 become flatter with increasing v_1 quanta, giving rise to progressive narrowing of the absorption bands as a function of v_1. The lifetimes derived from the bandwidths reflect the propagation times of the initially prepared wavepacket in the excited electronic state out of the FC region and give only lower limits to the dissociation lifetimes. It is intriguing that a diffuse vibrational structure can exist even when the lifetime associated with the line width is shorter than a vibrational period (i.e., "direct" dissociation). This has been also shown theoretically for CINO(S_0) and CH$_3$NO(S_1).37,41

3. Photofragment Rotational Excitations

The Franck-Condon Model for Photodissociation. The basic idea behind the FC model for dissociation is the expansion of the parent molecular wave functions in terms of the final dissociative state wave function.19–20 The squares of the expansion coefficients give the partial cross sections into each rotational state, and thus the diatomic rotational state distribution. Notice that the wave functions describing the dissociative state are not simply those of the free diatomic fragment, since in the dissociation the conserved quantities impose constraints on the relative motions of the two fragments.19

We start with the simple Franck-Condon treatment for triatomic photodissociation, ABC → A + BC, as developed by Besswick and Gelbart.19 In their treatment, the stretching (R, r) and bending (θ) motions of the parent are uncoupled, and the Hamiltonian describing the bending motion is

$$H = \frac{1}{2\mu_1 R^2} + \frac{1}{2\mu_2 r^2} + V(\theta)$$

where J is the diatomic rotational angular momentum, I is the relative orbital angular momentum between the fragments, and μ_1 and μ_2 are the reduced masses of A–BC and BC, respectively. The Jacobi coordinates used in these calculations are shown in Figure 8A. In the theory, the bond wave functions are expanded in terms of simultaneous eigenfunctions of the operators J^2, $J \cdot R$, $J \cdot Z$, and R^2, where $J = I + j$ is the total angular momentum, and Z is a space-fixed axis, chosen to lie along the body-fixed axis R (see Figure 8B). In particular, the bending states are represented by linear combinations of the diatom free-rotor wave functions, and stretching motions are uncoupled from fragment rotations. Although the theory is general and therefore applicable to all Js, in photodissociation involving jet-cooled samples the total angular momentum is very small justifying the use of $J = 0$, thereby
simplifying the equations considerably. The dissociative state wave function in this case can be written as

\[\Psi_{\text{free}} = Y_R(\theta) \]

where the \(Y_R \) are spherical harmonics and \(\theta \) is the body-fixed angle between \(r \) and \(R \), as defined in Figure 8A. As noted above, \(Y_R \) is not the free-rotor wave function of the diatom, but the wave function describing the concerted motion of \(R \) and \(r \) when \(J = 0 \).\(^9\) The diatomic rotational distribution is given by the overlap integral between the bound and free wave functions

\[P_J^\alpha = \left| \langle \Psi_{\text{bound}} | \Psi_{\text{free}} \rangle \right|^2 = \left[2\pi \int_0^\pi \sin \theta \, d\theta \, Y_J(\theta) \phi_{\alpha}(\theta) \right]^2 \]

where \(\phi_{\alpha}(\theta) \) is the bending wave function in quantum state \(\alpha \) in the ground or excited electronic state. In Figure 9, we display calculated rotational distributions for dissociation of CINO assuming harmonic oscillator bending wave functions in the excited electronic state (\(\omega_{\text{bond}} = 380 \text{ cm}^{-1} \) and \(B = 1.96 \text{ cm}^{-1} \)).

Morse and Freed obtained an expression similar to eq 3 by applying their analytical FC model to bent triatomics and using harmonic oscillator bending wave functions.\(^{17} \) The rotational probabilities are given by

\[P_J^\alpha = \sin^2 \left\{ \left[J/J_0 + (-1)^J \alpha/4 \right] \gamma_1 \left[(\omega_{\text{rig}}/2) \right] \exp(-\gamma_2) \right\} \]

where \(\alpha = j + 1/2 \), \(\alpha' \) is a constant related to the bending frequency and bending moment of inertia, \(\gamma_1 \) are the Hermite polynomials, and we set \(h = 1 \) throughout. The distributions obtained by using eqs 3 and 4 are similar, both exhibit a fast oscillatory term which depends strongly on the equilibrium bending angle \(\theta_0 \) and a slowly varying term given by the harmonic oscillator wave function squared with angular momentum argument. Equation 4, however, highlights the relation between the rotational distribution and the harmonic oscillator bending wave function, and also shows clearly the fast oscillatory factor (first term). We will come back to this last point later.

In our work, we took a slightly different approach to the FC expansion in cases where \(J = 0 \), in order to highlight the physics. We chose a molecule-fixed coordinate system with the \(Z \) axis perpendicular to the molecular plane aligned by \(R \) and \(r \) as shown in Figure 8C. Using the addition theorem of spherical harmonics, we obtained the "free" wave function:\(^{23} \)

\[\Psi_{\text{free}} = \left(4\pi/(2j+1) \right)^{1/2} \sum_m Y_m(\theta) Y_{jm}(\theta,\phi) \]

\[= \left(4\pi/(2j+1) \right)^{1/2} \sum_m Y_m(\theta) Y_{jm}(\theta,\phi) \exp(\text{im}\phi) \]

The corresponding rotational distribution for the diatomic fragment then becomes, for high \(j \) levels:\(^{42} \)

\[P_J^\alpha = 2\pi |(C_J\eta|^2 + |C_m\eta|^2) + \text{interference terms} | \]

where

\[C_{\alpha} = (2\pi)^{-1/2} \int \exp(\text{im}\phi) \, \phi_{\alpha}(\phi) \, d\phi \]

Equation 6 has a simple physical interpretation; the rotations of the diatom arise from parent bending motions, where angle opening \(|C_J\eta|^2 \) and closing \(|C_m\eta|^2 \) motions, which correspond to counterclockwise and clockwise rotations of the diatomic fragment, respectively, have equal probabilities. The interference terms between the two motions cause the fast oscillations which are strongly dependent on the bending angle, \(\phi_{\alpha} \).

Notice also that since \(C_{\alpha} \) in eq 7 is the Fourier transform of the bending wave function in the coordinate representation, it represents the wave function in the angular momentum representation.\(^{43} \) Recall that, owing to the symmetry of the harmonic oscillator Hamiltonian, its wave functions have the same functional form in both the coordinate and momentum representations.\(^{43} \) This is precisely why in eq 4 the slowly varying factor is the square of the harmonic oscillator wave function with angular momentum argument. In Figure 10, we display the first three bending wave functions in both coordinate and momentum representations (i.e., \(\phi_{\alpha}(\phi) \) and \(C_{\alpha} \)) calculated for CINO using the same parameters as in Figure 9.

As stated above, the interference terms in eqs 3, 4, and 6 cause fast oscillations in the rotational distributions (Figure 9). In photodissociation experiments, these oscillations will be rarely observed. They are strongly dependent on parent rotational levels, and since even under jet-cooled conditions a distribution of parent rotational levels is observed. They are strongly dependent on parent rotational levels, and since even under jet-cooled conditions a distribution of parent rotations is obtained, the oscillations will be averaged out.\(^{44} \) In addition, it has been shown that in the actual dissociation the combined motions in the diatomic stretch (\(r \)) and the reaction (\(R \)) coordinates tend to wash out the fast oscillations.\(^{44} \) Furthermore, the anisotropy in the bending potential (or torque), which changes fast oscillations in the rotational distributions (Figure 10). As stated above, the interference terms in eqs 3, 4, and 6 cause fast oscillations in the rotational distributions (Figure 9).
described by the FC model. In this case dissociation involves the requirement that the upper state be sufficiently repulsive to prevent or the ground electronic state. In the latter case, the only re-

development of a bending wave function, and therefore it is where the mapped bending vibrational level is either in the excited single parent rotational states, and exit-channel interactions are

sensitively on the number of bending quanta.

used in the model calculations, presented both in coordinate (φ) and momentum (m) space. As expected, the shapes of the wave functions in the coordinate and momentum representations are identical, giving rise to nodes in the angular momentum probability functions which depend sensitively on the number of bending quanta.

is shown in Figure 11, where exit-channel torques, J_1, of 7 and 11 angular momentum units are introduced. The torque causes a shift in the rotational distribution to higher J values (see below), but also smooths the fast oscillations. We are aware of only one case in which the fast oscillatory structure has been observed. In the dissociation of water on the first excited singlet state accessed from specific rotational levels of the (001) level of the ground electronic state, fast oscillations are observed which are well described by the FC model. In this case dissociation involves single parent rotational states, and exit-channel interactions are small. We emphasize that the FC model can be applied to cases where the mapped bending vibrational level is either in the excited or the ground electronic state. In the latter case, the only requirement is that the upper state be sufficiently repulsive to prevent the development of a bending wave function, and therefore it is the ground-state bending wave function which is expanded in terms of the rotor wave functions. By examination of the basic features of the harmonic oscillator Hamiltonian and its wave functions, further insight into the fragment rotational distributions can be obtained. For $J = 0$ (i.e., $I = -J$), the bending harmonic oscillator Hamiltonian can be written as

$$H = \frac{1}{2I} \dot{\varphi}^2 + \frac{I\omega^2}{2} (\varphi - \varphi_0)^2$$

where I is the bending moment of inertia defined by $I = (\mu_1 R_1^2)^{-1}$ $+ (\mu_2 R_2^2)^{-1}$, and ω is the bending frequency. The corresponding wave functions in the angular coordinate representations are

$$\phi_\varphi (\varphi) = \phi_\varphi ([\omega I]^{1/2}(\varphi - \varphi_0))$$

where $\phi_\varphi (x) = a_0 H_\varphi (x) \exp(-x^2/2)$ is the standard harmonic oscillator wave function. In the angular momentum representation, we obtain

$$C_m^n = \phi_\varphi (m/(\omega I)^{1/2})$$

Comparisons of eqs 9b, 6, and 7 demonstrate that without the interference terms the rotational distribution is just half of the square of the bending wave function (corresponding to $m \geq 0$), and therefore depends sensitively on the number of bending quanta (e.g., compare Figures 9 and 10). Notice also that the widths of the bending wave functions in the two representations, ΔJ and $\Delta \varphi_0$, are related by Fourier transformation. Since ΔJ depends on $(\omega I)^{1/2}$, floppy molecules (i.e., those having small I and/or small ω) are spread out in space, and therefore associated with narrow angular momentum distributions, thus resulting in narrow rotational distributions.

The Modified FC Model: Inclusion of Exit-Channel Torques.

The advantage of the FC model is its independence of the details of the dissociative PES. This simplicity also limits its applicability, since molecules dissociate on real PES's, and only in rare cases does the model predict correctly the rotational distributions. However, it is important to realize that the FC model always yields the initial angular momentum distribution inherent in the parent bending wave function. In the dissociation, this initial angular momentum distribution subsequently evolves under the influence of the PES into the observed product rotational distribution. As seen below, for fast dissociation the final rotational distribution may still reflect some of the characteristics of this initial distribution even in the presence of exit-channel torques. For cases where only a modest torque is generated during the dissociation (e.g., the photodissociation of CINO on T_1), we developed a simple physical picture which yields the fragment rotational distributions. This is basically a modification of a simplified FC model, in which a small, uniform torque is treated in a time-dependent fashion. Here we give the general framework of the model and apply it to the photodissociation of CINO(T_1). The model treats the motion along the reaction coordinate R classically and employs a time-dependent bending Hamiltonian. The time-dependent bending wave function at some critical time (i.e., critical R) is expanded as in the pure FC model. The angular anisotropy in the PES, and the couplings between different parent degrees of freedom are viewed as time-dependent parameters (i.e., the bending frequency, moments of inertia, and equilibrium angle all change during dissociation).

The time-dependent harmonic oscillator bending Hamiltonian is similar to eq 8

$$H(t,\varphi) = \frac{1}{2I(t)} \dot{\varphi}^2 + \frac{I(t)\omega(t)}{2} (\varphi - \varphi_0(t))^2$$

where $I(t) = (\mu_1 R_1(t)^2)^{-1}$ $+ (\mu_2 R_2(t)^2)^{-1}$, and $\omega(t)$ is defined as the time-dependent bending moment of inertia. $R(t)$ and $\varphi_0(t)$ denote average values of R and φ at any given time, and $\omega(t)$ and $\varphi_0(t)$ are the instantaneous bending frequency and equilibrium angle, respectively. As the molecule dissociates, one expects the bending force constant and therefore $\omega(t)$ to decrease rapidly. $\varphi_0(t)$ describes how the equilibrium bending angle changes during the dissociation, thus generating a unidirectional angular momentum

\[\text{Figure 10. The harmonic-oscillator bending wave functions of CINO(T_1) used in the model calculations, presented both in coordinate (φ) and momentum (m) space. As expected, the shapes of the wave functions in the coordinate and momentum representations are identical, giving rise to nodes in the angular momentum probability functions which depend sensitively on the number of bending quanta.}\]

\[\text{Figure 11. NO rotational distributions calculated from Franck-Condon projections of CINO harmonic-oscillator bending wave functions in T_1 into free NO wave functions, but including external torques, J_1 = 7 (upper panel) and 11 (lower panel).}\]
where the wave functions will adiabatically follow the changing Hamiltonian terms [i.e., using only the first two terms in eq 6 and summing over $\pm j$ (lower panel)]. When a unidirectional torque J_i is included, the modified FC model is used (solid lines). The upper panel shows the angular momentum wave function centered at $m = J_i$, which is obtained via Fourier transformation of eq 11. The rotational distribution shown in the lower panel is shifted relative to the one obtained without exit-channel torque.

supernimposed on the angular momenta that derive from the parent bending motion. Notice the similarities between eqs 10 and 8: if we set ω as a step function (i.e., ω is constant before dissociation, and equal to zero afterwards), and J and ω as constants, we obtain the pure Franck-Condon limit. If ω decreases slowly with time, the wave functions will adiabatically follow the changing Hamiltonian. In this case, we use a weighted average of the bending frequency, ω in eq 9. This recales the width of the angular momentum distribution according to $(\omega \Delta)^{1/2}$, and usually results in narrower angular momentum distributions, since ω decreases with increasing R.

The time-dependent problem for equilibrium angle change (i.e., ϕ_0 as a function of time) can be solved analytically to yield the time-dependent wave functions:

$$\Psi_\omega(t) = \exp[iJ_1(t)(\omega - \phi_1(t))]\phi_0(\omega - \phi_1(t))$$

where

$$J_1(t) = (\omega \Delta)^{1/2} \int_0^t \phi_0(t') \cos \omega(t - t') \, dt'$$

$$\phi_1 = \omega \int_0^t \phi_0(t') \sin \omega(t - t') \, dt'$$

The corresponding momentum wave function is centered at $m = J_i$, i.e., the angular momentum distribution is shifted in the direction of the torque generated by the change in the equilibrium bending angle during the dissociation. The resulting rotational distribution, obtained by neglecting the interference terms [i.e., using only the first two terms in eq 6], is:

$$P_f^m = F[\pm J_1(T)] + F[-J_1(T)]$$

where T is the time when the Franck-Condon expansion is carried out, and

$$F(x) = H_x^2[(\omega \Delta)^{-1/2}x] \exp(-x^2/2\omega)$$

In Figure 12, we show graphically how the rotational distributions are obtained from the wave functions given by eq 11, and in Figure 13 we show the superposition of torques.

Thus, the initial angular momentum distribution inherent in the parent wave function is modified in two ways during the dissociation; its center is shifted from zero to J_i due to the unidirectional torque, and its width is changed due to the change in the bending force constant. Most often, the wave function spreads in the angular coordinate during dissociation, thus giving rise to a narrower rotational angular momentum distribution than predicted by the pure FC model, as dictated by the uncertainty principle.

Mapping of Bending Wave Functions: Application to the Photodissociation of CINO(T1). The photodissociation of CINO on T_1 presents an opportunity for studying the influence of parent excited-state vibrational motion (both the stretch and the bend) on the dissociation dynamics. The experimental results show that the parent NO stretching vibration transforms adiabatically into fragment NO vibration, while the bending wave functions are mapped into fragment rotational distributions. In addition, the NO rotational constants are small enough to provide a dense grid of angular momentum states and thus show clearly the correspondence between the bending wave functions and the rotational distributions.

The PHOFRY spectrum of CINO in the region 525-625 nm consists of three groups of three peaks, assigned to progressions in the NO stretch, v_1, and bending, v_3, modes (Figure 6). We find that excitations in the T_1 ($00v_3$), (10v_3), and (20v_3) levels lead predominantly to formation of NO in $v_3 = 0, 1, 2$ respectively. The rotational distributions of NO($v_3 = 0$) and NO($v_3 = 1$) are shown following excitation in the $(00v_3)$ and $(10v_3)$ bending progressions, respectively, and in each case the excitation wavelength coincides with a peak in the photofragment yield spectrum. The distributions depend sensitively on the number of bending quanta in the upper state but are independent of the number of NO stretch quanta. Excitations in the (20v_3) bands result in similar distributions to those displayed in Figure 14.

The rotational distributions can be described by the modified FC model. Since the absorption spectrum exhibits diffuse vibrational structure, we assume that the excited-state vibrational wave functions are fully developed during the early stage of the dissociation. Therefore, to simplify the discussion, we divide heuristically the photodissociation of CINO on T_1 into three steps:

$$\text{CINO} + h\nu \rightarrow \text{CINO}^*$$

$$\text{CINO}^* \rightarrow \text{CINO}^{**}$$

$$\text{CINO}^{**} \rightarrow \text{Cl} + \text{NO}$$
Step I is the usual laser excitation which gives rise to the observed absorption spectrum, as per the FC factors. As discussed elsewhere, the adsorption line widths reflect mostly the slopes in the excited-state PES in the dissociation coordinate (i.e., R), and therefore reveal how long the molecules spend near the FC region. Step II describes the evolution of the initially prepared excited state toward a "critical configuration" (i.e., the transition state), before the final fragment separation takes place. Step III is a fast departure of the fragments, and, in the absence of couplings between the dissociation coordinate and the other coordinates (i.e., bending and NO stretch), the transition-state wave functions in the non-dissociative coordinates are "frozen" at the beginning of this departure and can be expanded in terms of the dissociative-state wave functions as described above. The final product rotational excitations are a consequence of (i) the initial angular momentum distributions inherent in the parent bending wave functions (which depend strongly on the number of bending quanta and are established in step I), and (ii) the evolution of this initial distribution on the dissociative PES (i.e., steps II and III).

By use of the modified FC model with transition-state bending wave functions and neglecting the fast oscillations discussed above, the observed rotational distributions can be simulated with two adjustable parameters, J_1 and ω in eqs 13 and 14.23,24

In Figure 15 we display the simulations and note that the best fits are obtained when: (i) ω decreases from the value derived from the absorption and photofragment yield spectra (380 cm$^{-1}$) to \sim190 cm$^{-1}$; and (ii) J_1 is bending-level dependent, i.e., the changes in ω depend on the excited-state bending level. The best fits are obtained with $J_1 = \pm 2, 2 \pm 1$, and 10 ± 1 for $\omega = 0$, 1 and 2, respectively, and the agreement with the experimental results is good.25

Without detailed knowledge of the T_1 PES and full quantum mechanical calculations, we cannot fully justify the parameters used in the simulations. However, the values of ω and J_1 are sensible. The best fits require $\omega = 190$ cm$^{-1}$, which is smaller than the bending frequency in the FC region (i.e., 380 cm$^{-1}$). As stated earlier, ω controls the spread of the angular momentum distribution, but not its nodal structure; the latter is determined solely by the number of bending quanta.22 The values of J_1 correspond to changes of $2-7$ in ω,23 in good agreement with the ab initio calculations.13 Comparison of Figures 14 and 15 shows that the experimental rotational distribution is distorted compared with the calculated one in that the first low J peak is higher relative to the second peak compared with the calculated distribution. This distortion probably occurs during step II, the evolution of the bending function on the PES toward the transition state.

(48) Similar results are obtained when including the interference effects, but the nodal structure is then less apparent, and the agreement with the experimental results is less obvious.
The sensitivities of the rotational distributions to the unidirectional torque are shown also in Figure 16, where we display NO rotational distributions obtained when tuning the photolysis laser to different regions within the (100) ← (000) and the (101) ← (000) bands of the T₁ ← S₀ transition. The distributions corresponding to the red wings of the absorption bands are shifted to lower J.²³ The model we developed assumes that most of the external torque develops along the reaction coordinate away from the FC region, and therefore the FC expansion is done at a "critical configuration" where the bending force constant is already small. Using the "reflection principle" for the dissociative absorption spectrum in the T₁ ← S₀ system (Figure 7), we realize that the red-wing excitations correspond to dissociation initiated at larger internuclear separations, R, than the blue-wing excitations. The average change in the rotational excitation only amounts to \(\Delta J \sim 2 \) for dissociation in the (101) band, as compared with a total \(J_1 = 7 \) needed to simulate the experimental results. Thus the data suggest that the coupling between translation and bending, which is the source of \(J_1 \), is weak in the FC region, and most of the external torque is developed at larger CI-N separations. Notice also that the ratio of the two peaks in the rotational distributions displayed in the lower panels of Figure 16 changes with excitation wavelength, demonstrating the dependence of the evolution of the bending wave function on the initial conditions. More accurate knowledge of the PES is clearly needed for more detailed simulations of the experimental results.

The NO rotational distributions from the dissociation of CINO(T₁) were the first to show the mapping of the excited-state bending wave functions.²² Our ability to observe such a clear correspondence between the bending wave functions and the rotational distributions derives from some unique features of the T₁-PES. It is rather flat in the N-Cl coordinate near the Franck-Condon region, and vibrations are supported in the bending and NO stretch coordinates. It is, however, repulsive in the N-C coordinate, resulting in fast, "direct" dissociation. The evolutions of the vibrational coordinates are to a large extent uncoupled, and the final-state interactions do not distort significantly the mapping of the bending wave function. Also, the absence of contributions from parent rotations in the jet-cooled samples adds to our ability to identify unambiguously the origins of the NO rotational excitations. The rotational distributions obtained with room temperature samples exhibit a much less pronounced structure, with the 'nodes' almost filled.⁴⁹

Bending Wave Functions and Large Exit-Channel Torques. When final-state interactions are dominant, the rotational distributions are often well described by the semiclassical rotational reflection principle (RRP) developed by Schinke.²² The rotational excitation is obtained by reflecting the initial bending wave function in the coordinate representation into the final angular momentum states of the fragment via the classical excitation function \(J(\phi) \). There are a number of excellent recent reviews describing RRP,²²,²⁶ and therefore only a brief description will be given here.

The rotational excitation function \(J(\phi) \) is calculated by using classical trajectories on the excited state PES (usually assuming that the initial angular momentum is equal to zero). This excitation function \(J(\phi) \) reflects the torque that the diatomic molecule accumulates during dissociation, and establishes a classical mapping between the parent bending angle \(\phi \) and the fragment angular momentum \(j \). The bending wave function squared (in the coordinate representation) then gives the corresponding weighting factor for each \(j \). Finally, the rotational state distribution of the diatomic fragment is given by

\[
P(j) = \sin \phi(\phi) \phi_{\text{new}}^2(\phi) \left| \frac{dj}{d\phi} \right|^2
\]

where \(\phi(\phi) \) is given by the inverse of the rotational excitation function.

\[
j = J(\phi); \quad \phi = J^{-1}(j)
\]

(49) Ogai, A.; Qian, C. X. W.; Reisler, H., unpublished work.

Figure 17. NO \(v'' = 0 \) and 1 rotational populations obtained upon excitation of CINO to S₁(1'A'). The 11 and 22 subscripts refer to lines originating in the \(^2\Pi_{1/2} \) and \(^2\Pi_{3/2} \) states of NO, respectively. D band excitation to S₁(000) yields predominantly NO in \(v'' = 0 \) while C band excitation to S₁(100) yields predominantly NO in \(v'' = 1 \). For each vibrational level, the relative scales of the upper and lower panels are identical, while the relative populations of \(v'' = 0 \) and 1 are not normalized. The available energies with 467- and 440-nm excitations are 9413 and 7867 cm⁻¹, respectively.

Notice that RRP, being a semiclassical theory, uses a classical direct mapping between the parent bending angle and the final fragment angular momentum. It works best when the initial angular momentum inherent in the bending wave function is small relative to the external torque and the width of the fragment rotational distribution is determined predominantly by the excitation function. It has been very successful in a large number of cases including the dissociation of CINO on S₁.²⁹ For this fast dissociation, the bending wave functions in the excited states do not have time to develop. The rotational distributions across the D and C bands peak at \(J'' = 31.5 \) (see Figure 17) and are typical of those arising from dissociation on a surface with a large angular anisotropy. Schinke et al. performed both classical and quantum mechanical calculations on S₁ and reproduced well the experimental results.³⁷

A simple impulsive model calculation, however, does not agree with the experimental results, since it yields a distribution peaking at \(J'' = 40.5 \) which is also much broader than the experimental distribution.³⁸ Schinke et al. find that the final rotational distribution is governed by two factors: (i) the impulsive force along the Cl-N bond that causes closing of the angle during the bond scission, and (ii) the anisotropy in the exit-channel angular potential which has a counteracting effect in inhibiting free rotation.³⁷ A detailed look at the S₁-PES shows that it is rather isotropic in the vicinity of the equilibrium angle where the dissociation commences. Consequently, rotation of NO is induced initially by the impulsive force acting between CI and N. However, as NO starts to rotate, the anisotropy in the PES hinders free rotation of NO around its c.m. Since the two forces act in opposite directions, the final rotational excitation of NO is smaller than predicted by the impulsive model.³⁷ Thus, the net direction of the force does not coincide with the Cl-N bond, but is directed farther toward the c.m. of NO.

Both the RRP and the quantum mechanical calculations show that the width of the parent vibrational probability density on the ground electronic state is not directly reflected in the width of the rotational distribution; rather, the original wavepacket prepared in the Franck-Condon region subsequently propagates under the influence of the forces on the S₁ PES. The motion of the wavepacket can be divided into two parts: the center of the wavepacket follows a classical trajectory, thereby developing angular
giving rise to a narrower final rotational distribution. The wavepacket is accompanied by a decrease in the momentum spread, and intensities are divided by the corresponding line strengths. The broadening of the wavepacket can also be seen in the calculations as an increase in size of the wavefunction toward the transition state. Most often, the initial impulse, described by the reference impulsive model, is modified by the detailed evolution on the PES along the reaction coordinate. Recently, oscillations in \(\text{OH}(X^2\Pi) \) rotational distributions obtained in the dissociation of \(\text{H}_2\text{O} \) initially excited to combination bands in the ground electronic state were observed and interpreted as reflections of the shapes of the bending wave functions in the ground state. Also, as discussed above, in favorable cases even when a large impulsive force does exist, the shapes of the excited-state bending wave functions can still be reflected in the product rotational distributions. However, the mapped wave function is not necessarily thin in the Franck–Condon region, but may be the wave functions of the transition state. More important, the distortions in the shapes of the wave functions are manifestations of final-state interactions and can be interpreted in terms of the PES along the reaction coordinate. We also note that often direct dissociation leads to inverted, “bell-shaped” rotational distributions that “reflect” the ground-state bending wave function but are still sensitive to the shape of the PES. We believe that many of these systems (e.g., \(\text{CICN} \), \(\text{H}_2\text{O} \)) will also exhibit mapping of bending wave functions when excited to higher bending levels in their ground electronic states, and the exact shape of the rotational distributions will reflect the dissociation dynamics and the propagation of the wavepacket to the transition state. The situation is more involved for predissociative systems; here both the couplings of the vibrational and translational degrees of freedom in the exit-channel and the dissociation time will determine whether the shape of the bending wave function will still be preserved to some extent in the final rotational distribution. We are currently studying the direct and vibrational predissociation channels of \(\text{FNO}(S_1) \) and will compare the NO rotational distributions arising from the direct vs the predissociation channels. The experimental data, combined with knowledge of the PES and calculations of the dissociation dynamics, yield accurate information on the relationship between the electronic and nuclear motions. The physically intuitive models described in this article, present a qualitative way to interpret the data, and can also be predictive.

4. Concluding Remarks

The classification presented here of sources of angular momenta and their contributions to the fragment rotational distributions is general, and our recent work shows that in many cases fragment rotational excitations can be understood with physically intuitive models. The initial impulse, bending wave functions, and exit-channel interactions all conspire to yield the final fragment rotational distributions, as shown in recent detailed calculations. The mapping of the parent bending wave functions into rotational distributions illustrated here is not limited to excited-state wave functions and small final-state interactions. As discussed by Freed and co-workers, the mapped wave functions can also be in the ground electronic state, especially in situations when there is no structure in the repulsive excited state (i.e., fast, direct dissociation). Recently, oscillations in \(\text{OH}(X^2\Pi) \) rotational distributions obtained in the dissociation of \(\text{H}_2\text{O} \) initially excited to combination bands in the ground electronic state were observed and interpreted as reflections of the shapes of the bending wave functions in the ground state. Also, as discussed above, in favorable cases even when a large impulsive force does exist, the shapes of the excited-state bending wave functions can still be reflected in the product rotational distributions. However, the mapped wave function is not necessarily thin in the Franck–Condon region, but may be the wave functions of the transition state. More important, the distortions in the shapes of the wave functions are manifestations of final-state interactions and can be interpreted in terms of the PES along the reaction coordinate. We also note that often direct dissociation leads to inverted, “bell-shaped” rotational distributions that “reflect” the ground-state bending wave function but are still sensitive to the shape of the PES. We believe that many of these systems (e.g., \(\text{CICN} \), \(\text{H}_2\text{O} \)) will also exhibit mapping of bending wave functions when excited to higher bending levels in their ground electronic states, and the exact shape of the rotational distributions will reflect the dissociation dynamics and the propagation of the wavepacket to the transition state. The situation is more involved for predissociative systems; here both the couplings of the vibrational and translational degrees of freedom in the exit-channel and the dissociation time will determine whether the shape of the bending wave function will still be preserved to some extent in the final rotational distribution. We are currently studying the direct and vibrational predissociation channels of \(\text{FNO}(S_1) \) and will compare the NO rotational distributions arising from the direct vs the predissociation channels. The experimental data, combined with knowledge of the PES and calculations of the dissociation dynamics, yield accurate information on the relationship between the electronic and nuclear motions. The physically intuitive models described in this article, present a qualitative way to interpret the data, and can also be predictive.

(52) Ogai, A.; Brandon, J.; Reisler, H., to be published.
(53) Bai, Y. Y.; Reisler, H., unpublished work.

Feature Article

Figure 18. Nascent NO\((X^2\Pi)\) and NO\((X^2\Pi)\) rotational level distributions (\(Q_{11}\) and \(Q_{22}\) lines, respectively) obtained following excitation of jet-cooled FNO at wavelengths corresponding to \((100)\) and \((101)\) levels in \(S_1\) (panels a and b, respectively). In both cases the \(Q_{22}\) and \(Q_{11}\) line intensities are divided by the corresponding line strengths.

The Journal of Physical Chemistry, Vol. 95, No. 18, 1991 6773
In conclusion, the current state-of-the-art theoretical and experimental developments in photodissociation dynamics have led to a much better understanding of the relationship between the electronic motions (PES) and nuclear motions (product state distributions). The advances made in recent years allow us to describe certain types of direct photodissociation processes within a more general, predictive framework, and this understanding should in turn form the basis for better control of photoinitiated reactions and other photoselective processes.

Acknowledgment. We have benefited greatly from discussions and correspondence with R. Schinke, R. B. Gerber, M. D. Morse, K. F. Freed, M. Shapiro, C. Wittig, Y. Chen, and G. A. Segal. We thank Lori Iwata-Hodgson for her excellent contributions to the early work. We are also grateful to R. Schinke for communicating results prior to publication and for ongoing in-depth discussions. The research is supported by the National Science Foundation and the Army Research Office under the auspices of the Center for the Study of Fast Transient Processes.

ARTICLES

"Memory Effects" In Molecular Fragmentation Induced by Site-Specific Core Excitation Using a Reflectron Time-of-Flight Mass Spectrometer

Wieland Habenchicht, Hermann Bailer, Klaus Müller-Dethlefs,* and Edward W. Schlag

Institut für Physikalische und Theoretische Chemie, Technische Universität München, Lichtenbergstrasse 4, D-8046 Garching, F.R.G. (Received: June 18, 1990)

Bond-selective fragmentation of the molecules CF2=CH2 and CF3-CH3 is observed for site-specific C(1s) excitation. Excitation at either the fluorinated or hydrogenated C atom of CF2=CH2 and CF3-CH3 shows that the molecule memorizes the initial site of energy deposition, hence a chemical "memory effect". To follow the site-specific fragmentation channels, we employ a new "zero kinetic energy (ZEKE)" photoelectron-photoion coincidence technique using monochromatized X-ray synchrotron radiation from BESSY. The detection of ZEKE electrons serves to select the specific excitation of a carbon atom within the molecule. The fragmentation channels were assigned with high mass resolution by using a reflectron time-of-flight mass spectrometer.

1. Introduction

The search for bond-selective chemistry has received considerable attention during the past two decades. The excitation of inner-shell orbitals in molecules by soft X-ray synchrotron radiation offers a particular advantage since core orbitals like C(1s), N(1s), etc. are generally strongly localized at a specific atom and virtually do not participate in the chemical bonding. For the same kind of atom a site-specific excitation (i.e., the formation of a 1s-1 core hole localized at a specific atom) is made possible due to the "chemical shift".1 This shift in energy of the 1s inner-shell orbitals for different ligands can be interpreted as an electron correlation effect between the valence electronic structure and the core level which depends on ligand properties like their electronegativity. For example, the binding energy of the C(1s) orbital of fluorinated hydrocarbons is some electronvolts higher compared to the C(1s) orbital (see section 3). To understand bond-selective chemistry and core electron excitation, it is of great interest to determine whether fragmentation channels depend on the site of excitation or whether randomization of energy distribution destroys the molecule's memory of the excitation process.

Site-specific fragmentation processes in acetone following C 1s → Rydberg orbital and 1s → σ* excitation were first reported by Eberhardt et al.2,3 in a mass spectrometric study using monochromatized tunable synchrotron radiation. In this example, the 1s → σ* transition leads to a localized C(1s-1) core hole (i.e., site selectivity), since the total cross section in the below-threshold region is dominated by that resonance. The fragmentation patterns observed in the σ* resonance were quite different from those observed in the threshold region. Other studies on site-selective fragmentation processes were carried out by Nenner et al.4 Murakami et al.5 and Murphy et al.6 Many aspects of chemistry induced by core orbital excitation were recently reviewed by Hanson.7 The trend of such investigations is to use electron–ion coincidence techniques8-11 and to resolve specific channels, e.g., by use of Auger electron–photoion coincidences12,13 or by photoion–photoion coincidences14-15.

To whom correspondence should be addressed.

References: