

Unimolecular Reaction Dynamics: Molecules, Radicals and Networks Hanna Reisler

Chemistry Department, USC

Herschbach Medal Talk, DMC, 2017

Outline

- My winding road to a faculty position at USC
- Past research: What I still find exciting
- Fast forward: current and continuing research
- On being a woman in science:
 The WiSE program at USC
- A few lessons learned

Funding: NSF, DOE, AFOSR, ARO, PRF

First paper in Physical Chemistry

Hydrated Electron Reactions in View of Their Temperature Dependence

M. Anbar Z. B. Alfassi, H. Bregman-Reisler
The Weizmann Institute of Science Rehovot,
Israel, and The Soreq Nuclear Research Center
Yavne, Israel
JACS, 89, 1263 (1967)

Michael Anbar, 1927-2014

Weizmann Institute

The Ph.D. Years at the Soreq Nuclear Research Center

Advisor: Saadia Amiel, 1930-1978

How to build an ion beam machine with almost no equipment:

Inspiration: Cermak and Herman in Czechoslovakia.

Our idea: use soft electron impact ionization to create molecular ions without fragment ions.

Thesis topic:
Charge transfer reactions of molecular ions

What I gained: Independence Mentoring by accomplished women

What I missed: Interactions with challenging colleagues

Zdeněk Herman

Postdoc years, 1972-1974

The Johns Hopkins University Advisor: John P. Doering 1938-2010

IAEA Fellowship for underdeveloped countries

Electronic and vibrational excitation induced by inelastic collisions of positive ion beams

What I gained:

Research with up-to-date equipment

Doering's advice: Get the best data. They will stay!

What I regret:

Not going to Canada to observe the Aurora Borealis

Independent project back at Soreq

Group leader of chemical lasers: Cl + HI (1974-1977)

Our son in 1977

1977: Arrival at USC to work in Curt Wittig's group

First projects: (i) E-V energy transfer of Br*

(ii) Kinetics and dynamics of bimolecular reactions of free radicals.

The hardest thing: Leaving at a fixed time because of child care.

Benefits: Organizational and time management skills

The Wittig years:

- (i) Unimolecular reactions on the ground state
- (ii) Photodissociation dynamics on excited states
- (i) NCNO: State-resolved studies of a barrierless unimolecular reaction
 The power and limitations of statistical theories

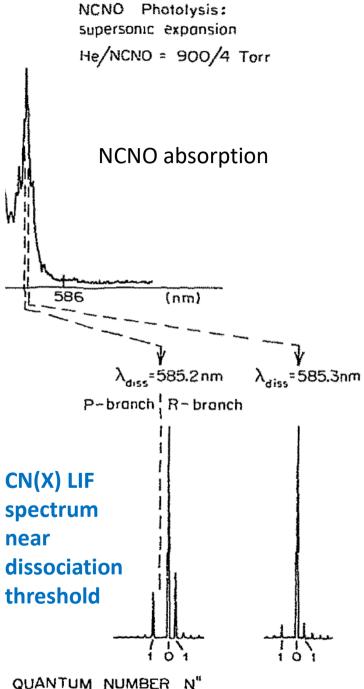
Near dissociation threshold

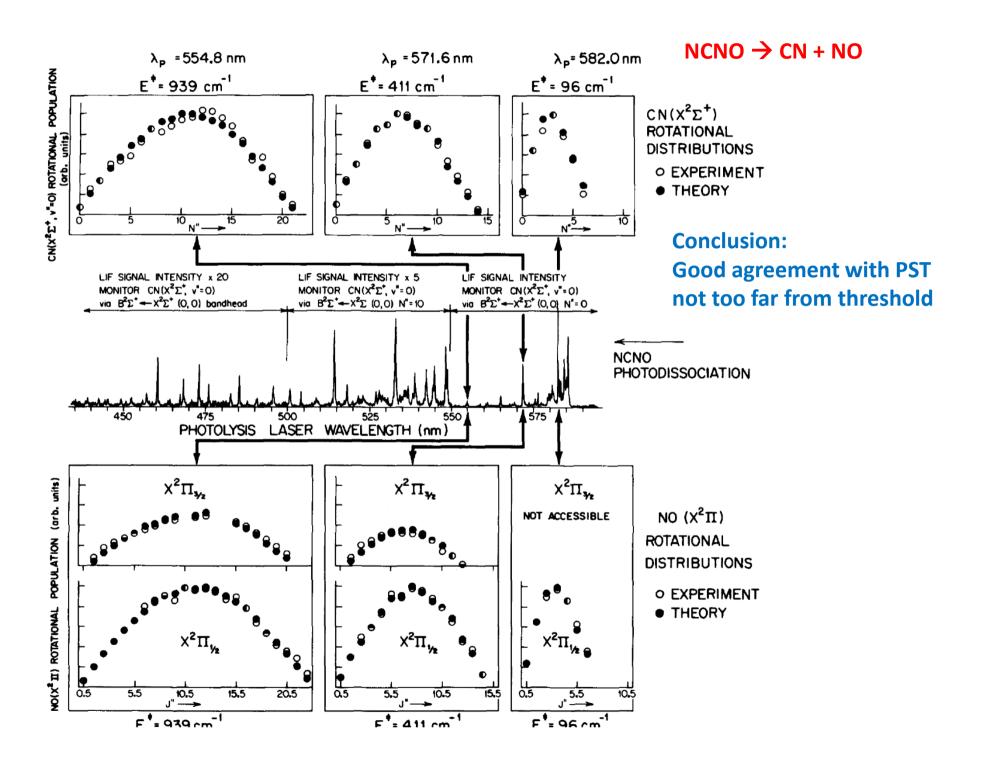
Near threshold photodissociation of expansion cooled NCNO: nascent CN(X2S+) without internal excitation I. Nadler, H. Reisler, M. Noble, and C. Wittig, Chem. Phys. Lett. **108**, 115 (1984).

Curt Wittig (1983)

CN and NO products distributions at higher energies: Tightening of the transition state

NCNO → CN+NO: complete NO(E,V,R) and CN(V,R) nascent population distributions from well-characterized monoenergetic unimolecular reactions C.X.W. Qian, M. Noble, I. Nadler, H. Reisler, and C. Wittig, J. Chem. Phys. 83, 5573 (1985).


Dr. Israel Nadler-Niv



Charles Qian

Prof. J. Pfab came from Scotland to teach us how to make NCNO without explosions.

Main observation: No internal energy in the products near threshold. Results agree with PST.

Transition to tenured position at USC, 1987

Center for the Study of Fast Transient Processes headed by Curt Wittig:

Collision Induced dissociation of highly vibrationally excited molecules in the gas phase and on surfaces (NO₂)

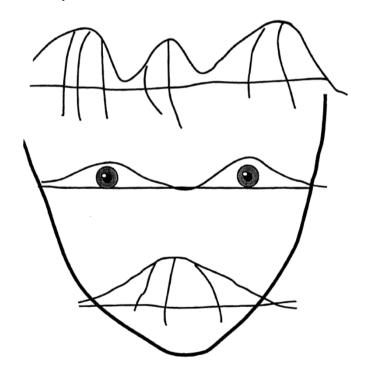
Spectroscopy and dynamics of fast evolving states

Properties that are sensitive to the shape of the potential energy surfaces

Collaboration with theoreticians

First: Reinhard Schinke, Keiji Morokuma, Moshe Shapiro, Uri Peskin/Bill Miller

Later: Stephen Klippenstein, Anna Krylov, David Yarkony, Joel Bowman, Hua Guo


New experimental tool: Photofragment Imaging (Chandler and Houston, 1987)

Experimental probes of potential energy surfaces


Mapping excited state transition state wavefunctions into rotational distributions: CINO on T₁

Dr. HO

By Charles Qian, 1988

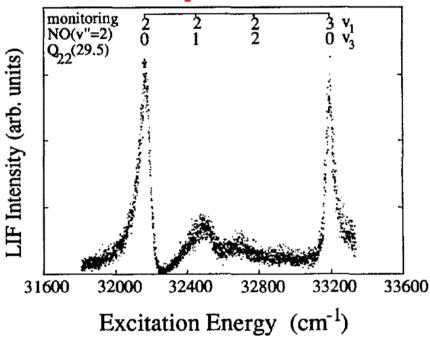
C.X.W. Qian, A. Ogai, L. Iwata, and H. Reisler, J. Chem. Phys., **92**, 4296 (1990)

Interference Effects: Experimental probes of dissociative states: **Fano profiles** in the state-specific photodissociation of **FNO**, J.T. Brandon, S.A. Reid, D.C. Robie and H. Reisler, J. Chem. Phys., **97**, 5246 (1992).

Collaboration with theoreticians

Reinhard Schinke

Moshe Shapiro


Uri Peskin

Also Moshe Shapiro And Bill Miller

Excitation to transition state region: Interference between direct outgoing wave and recurrences to bound region

Photofragment yield spectrum of FNO absorption to S₁: monitorin NO (v,J)

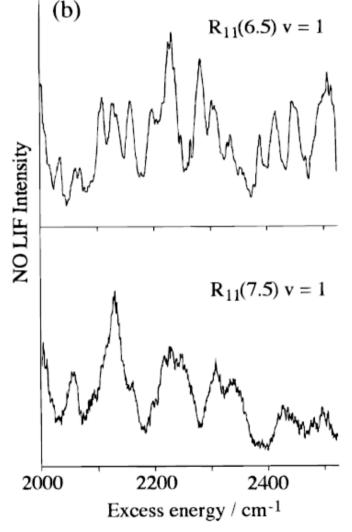
$$\sigma(\widetilde{v}) = \sigma_0(q+\epsilon)^2/(1+\epsilon^2) + \sigma',$$

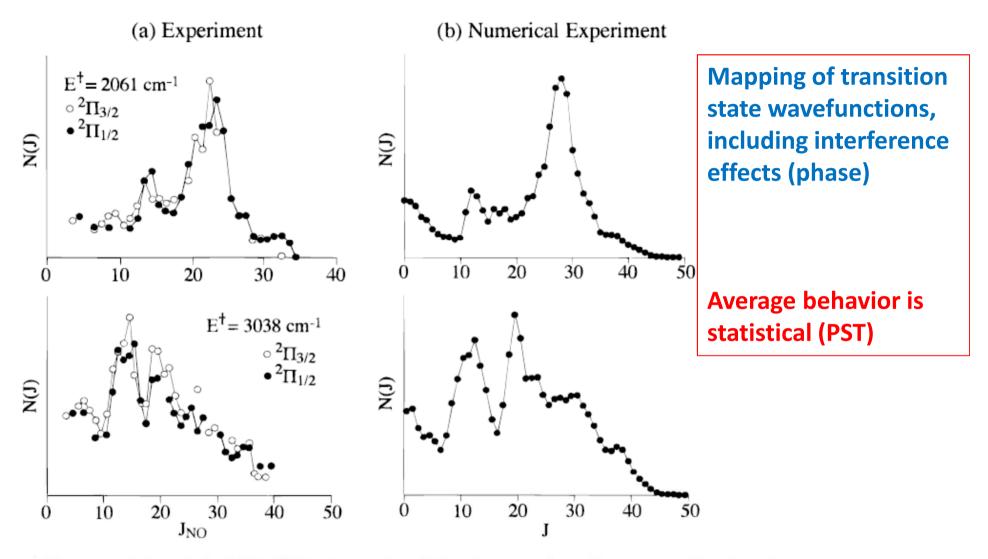
where

$$\epsilon = (\widetilde{\nu} - \widetilde{\nu}_0)/(\Gamma/2).$$

Scott Reid

Andrei Sanov




The curious case of NO₂: Fluctuations and overlapping resonances in a unimolecular reaction

Resonances and fluctuations in the unimolecular reaction of NO₂, **S.A. Reid, A. Sanov** and H. Reisler, Roy. Soc. Chem. Faraday Discussion, **102**, 129 (1995).

Photofragment yield spectra obtained by monitoring NO in v=1, J = 6.5 and 7.5 at excess energies 2000-2500 cm⁻¹

Final state-selected spectra in unimolecular reactions: A transition-state-based random matrix model for overlapping resonances, U. Peskin, W.H. Miller and H. Reisler, J. Chem. Phys., 102, 8874 (1995).

Figure 10. (a) NO(${}^{2}\Pi_{1/2}$) and (${}^{2}\Pi_{3/2}$) rotational state distributions obtained at $E^{\dagger} = 2061$ and 3038 cm $^{-1}$ following one-photon excitation. (b) Calculated distributions using Franck—Condon mapping of harmonic TS basis functions whose complex coefficients are randomly weighted, as described in the text. (From ref 22.)

Velocity map imaging

David Chandelr, Thierry Droz-Georget, Mikhail Zyrianov

Vladimir Dribinski: BASEX

Imaging

David Chandler (Sandia) fostered collaborations and interactions

The imaging technique sees it all!

Current Work

Photodecomposition of molecules and radicals Conical Intersections

Vibrational predissociation of H-bonded clusters State specificity

Molecular transport and reactions in amorphous solid water using nanoarrays as nanoheaters with Curt Wittig

Radical Adventures

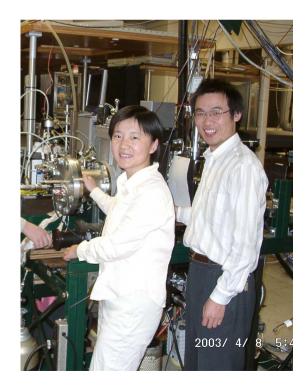
Rydberg-valence interaction

Interacting Rydberg and valence states in radicals and molecules: Experimental and theoretical studies, H. Reisler and A.I. Krylov, Int. Rev. Phys. Chem., **28**(2) 267-308 (2009)

Conical Intersections: David Yarkony

The long saga of CH₂OH on the ground and excited states

First generation: David Conroy and Victor Aristov


Second Generation: Lin Feng, Boris Karpichev, Dr. Andrei Demyanenko, Dr. Jie Wei

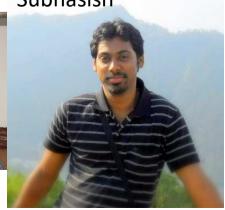
Third Generation: Mikhail Ryazanov, Subhasish Sutradhar, Dr. Chirantha Rodrigo

Experiment: Hudgens (UV), Nesbitt (IR),

Theory: Marenich and Boggs, Bruna and Grein, Anna Krylov and Joel Bowman, David Yarkony and Hua Guo. The tale is not complete yet!

Lin Wei

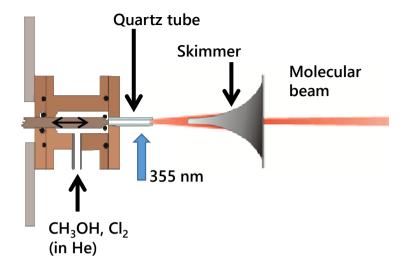
Andrei

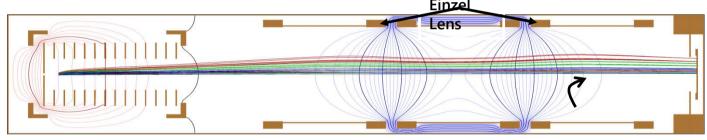

David

Mikhail

Subhasish

Pulsed nozzle

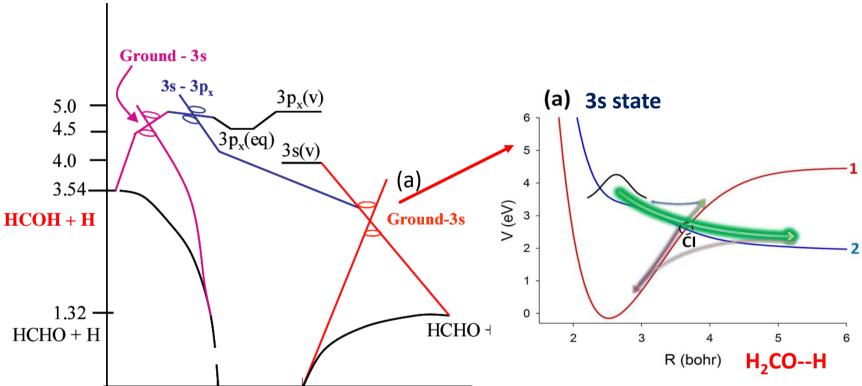

•Translational energy of H(D) ions recorded using sliced velocity map imaging


(Design: Mikhail Ryazanov)

 $CH_3OH + CI \rightarrow CH_2OH$

• Photololysis: UV or near IR. $CH_2OH \rightarrow H + H_2CO$, HCOH

•H detected by ionization (121.59 nm + 365 nm).


Slicing: 5 ns pulse lon detection + Magnification control; Ryazanov and Reisler, J. Chem. Phys. 138, 144201 (2013).

Ground state: $CH_2O + H \leftarrow CH_3O \Leftrightarrow CH_2OH \rightarrow CH_2O + H$

Experiments and calculations: E. Kamarchik, C. Rodrigo, J.M. Bowman, H. Reisler, and A. I. Krylov. J. Chem. Phys. **136**, 084304 (2012); Ryazanov, Rodrigo and Reisler, J. Chem. Phys. **136**, 084305 (2012).

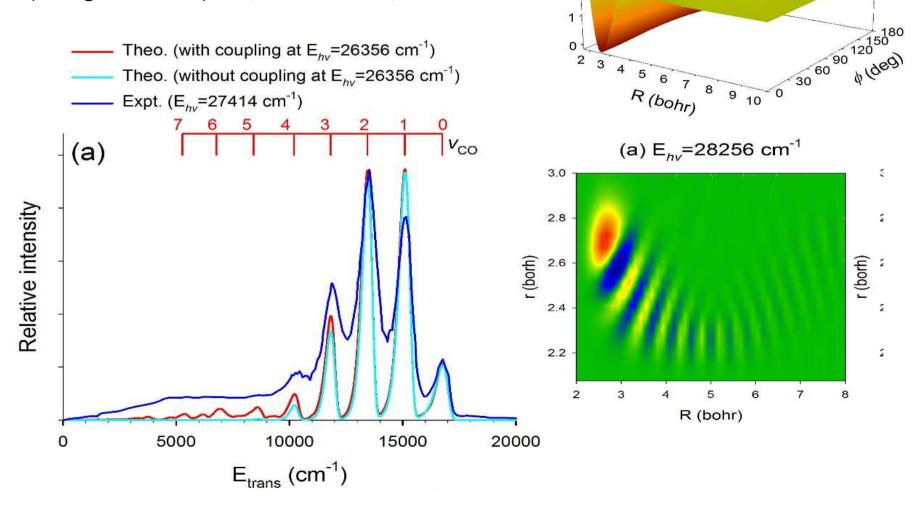
Vibrational energies: using IR-UV double resonance REMPI detection (Wei et al. JCP 2006)

Dissociation on the 3s state: Conical intersection

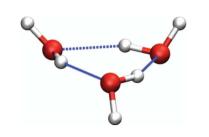
НСНО-Н

B. C. Hoffman and D. R. Yarkony, JCP 116, 8300 (2002).Yarkony, JCP 122, 084316 (2005); JPCA, 2015Feng, Demyanenko, Reisler, JCP, 118, 9623 (2003).

CH₂OH


Н-СНОН

Nonadiabatic photodissociation dynamics of the hydroxymethyl radical *via* the 2²A(3s) Rydberg state: A four-dimensional quantum study, Xie, Malbon, **Yarkony, Guo**, JCP, 2017


Dissociation on 3s dissociative state: With and without coupling to the ground state

Breaking the O-H bond: H₂CO + H channel

Experiment: Rodrigo, Zhou, Reisler, J. Phys. Chem. A (Wittig Festschrift) 117, 12049-12059, 2013.

Adiabatic PESs

Imaging Bond Breaking and Energy Transfer Pathways in Small H-bonded Networks

Vibrational Predissociation of dimers, trimers and tetramers

First: Jessica Parr, Dr. Guosheng Li

Second: Blithe Rocher, Dr. Andrew Mollner

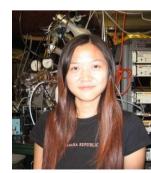
Third: Lee Ch'ng, Dr. Amit Samanta

Fourth: Dan Kwasniewski, Kristen Zuraski

Theory Collaboration: Prof. Joel Bowman and coworkers

Review: Chem. Rev. 2016, 116 (9) 4913

Kristen


Daniel

Amit

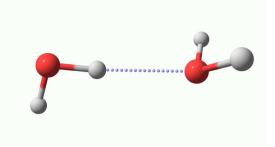
Lee

Jessica

Guosheng

Blythe Andrew

Imaging H-Bond Breaking

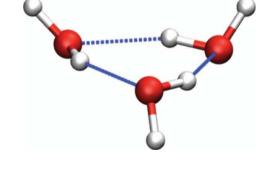

Dissociation Energy

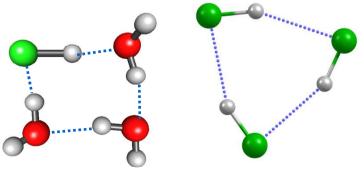
Mechanism of predissociation

Product Energy Distributions

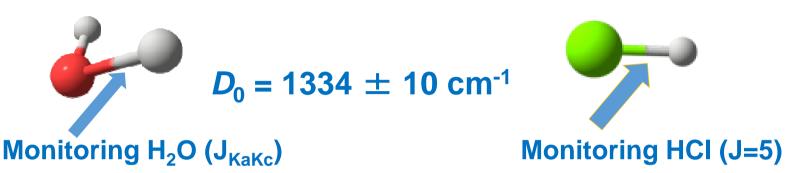
Propensity rules

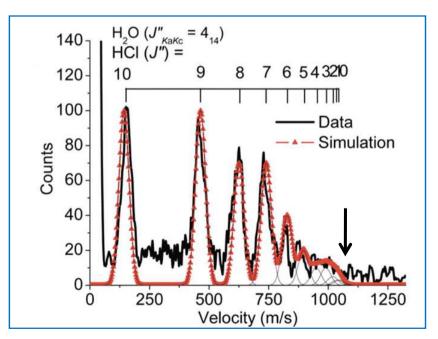
Prof. Joel Bowman

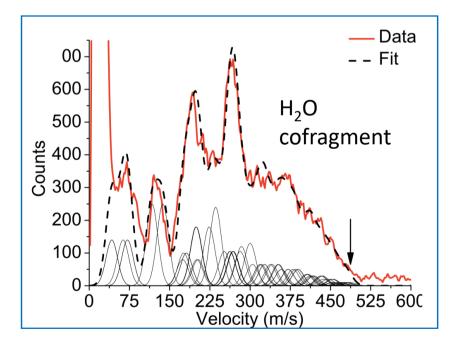

...and for cyclic networks:


Energy transfer mechanism in a ring

Quantitative contributions of cooperativity

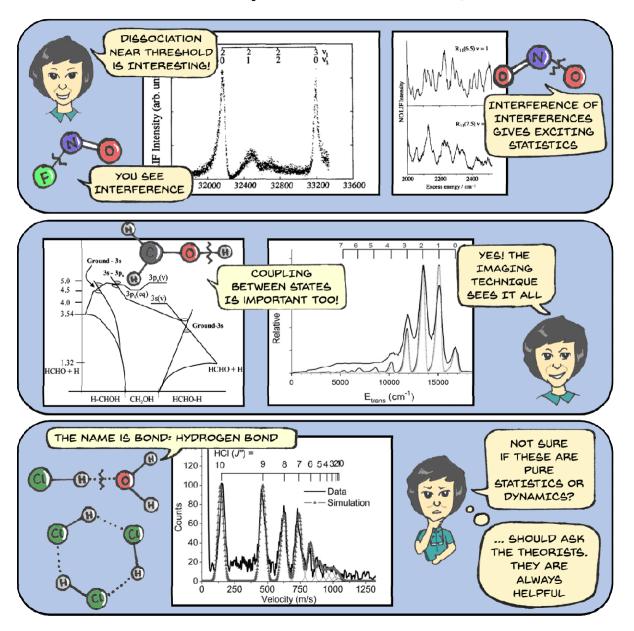

Samanta, Wang, Mancini, Bowman, Reisler, special issue on Non-covalent Interactions, *Chem. Rev.*, 2016, 116 (9), 4913

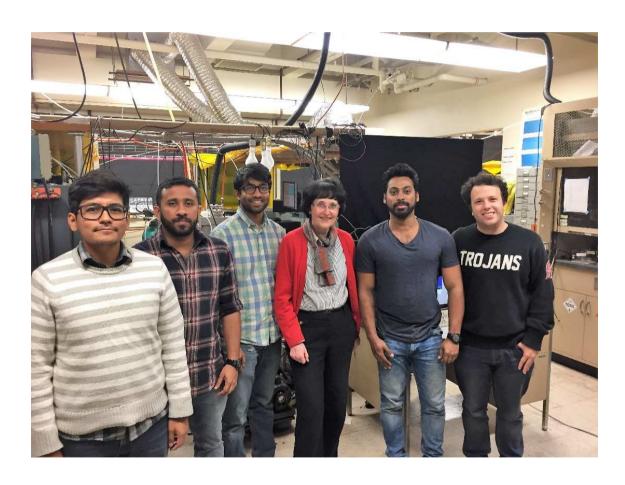




H₂O-HCl: Structured velocity distributions

$$h v + E_{rot}(HCl - H_2O) = D_o + E_{vib,rot}(H_2O) + E_{rot,vib}(HCl) + E_{Trans}$$





Rely on structures in an array of images to get a unique and precise value of D₀

Art work by Bibek R. Samanta, 2019

Current Group

Mixtli Ravin Bibek

Subhasish Dcan

University of Southern California

Women in Science: challenges and perspective (wise.usc.edu)

If you don't like something, change it.

If you can't change it; change your attitude.

Don't just complain

Maya Angelou

Much progress has been made, but cademic cultures are hard to change.

- Both men and women need to take family leave
- Most women are and will remain the primary caretakers of young children.
- Women often have non traditional career trajectories
- Need to provide good mentoring and special accommodations when needed
- Support networks are helpful for careers (and good for health)
- Train women on how to succeed (COACh; www.coach.uoregon.edu)

Geri Richmond, 2017 Priestley Medal

Richmond in honored for:

"Her pioneering research to understand the characteristics of surfaces in chemical processes has advanced studies related to energy, the environment and biological applications. Beyond the lab, she has been a devoted advocate for women in science and a true trailblazer in assuring a diverse workforce."

"Richmond is also the founding and current director of <u>COACh</u>, a grassroots organization formed in 1998 to promote career advancement for women scientists and engineers. More than 18,000 scientists worldwide have attended COACh career-building workshops since the organization began."

Some Lessons Learned (so far...)

Know who you are: I discovered my aptitude for teaching and mentoring while doing it

You can't have it all, but you can certainly have a satisfying life!

To the students:

Keep on learning
Keep your enthusiasm and get high on science
Find an environment where you can relax

What kept me going:

Excitement about science and discovery
The quality of the people around me
Keeping a sense of humor and optimistic
view
Friendships and a sense of community
My family!

With Emil on our 50th wedding anniversary

There is still a lot to discover:

"...The full area of ignorance in not yet mapped; we are at present only exploring its fringes". J.D. Bernal