Prospective Graduate Students Back to the Main Page
 Take the Tour | Videos | Application Information | Request Information | Online Application | Q&A
home :: people :: faculty
Print    Email

Richard L. Brutchey

Associate Professor of Chemistry
Inorganic Chemistry

B.S., UC Irvine, 2000
Ph.D., UC Berkeley, 2005
Office: LJS 260
Phone: (213) 821-2554
Fax: (213) 740-0930
Email: brutchey@usc.edu
 Group Homepage


Research Focus

 

Synthetic Methodology
Despite over two decades of developments in the field of nanocrystal synthesis, there are still only a limited number of ways to synthesize functional inorganic nanocrystals – the majority of which require high temperature conditions. As such, there is a need to develop new rational methodologies for the synthesis of functional inorganic nanocrystals under low temperature conditions, much in the same way that organic chemists have developed a very extensive and diverse toolbox of bench-top reaction chemistry. Moreover, low reaction temperatures offer the benefit of kinetic control over nanocrystal morphology, composition, and crystal structure. The Brutchey Group is developing new synthetic routes to functional and compositionally complex perovskite and semiconductor nanocrystals using low-temperature, high yielding, and scalable conditions, and is subsequently studying the reaction and growth mechanisms and functional properties of these materials.

Semiconductor Nanocrystals for Solar Cells
The Brutchey Group has developed the use of organodichalcogenide reagents (e.g., tBu2E2, E = O, S, Se, Te) as soluble chalcogen precursors that thermally or photolytically decompose in solution to form semiconductor nanocrystals in the presence of metal cations. Using this approach, we can synthesize III-VI, I-III-VI, IV-VI and group VI semiconductors at temperatures ranging from room temperature to 180 °C. These low temperature conditions have allowed us to kinetically access semiconductor nanocrystals with unusual crystal structures, non-stoichiometric compositions, and unique morphologies. Once in hand, we are using these semiconductor nanocrystals to fabricate hybrid inorganic/organic solar cells where the inorganic nanocrystals act as the acceptor phase in a bulk heterojunction device geometry. These systems offer promising alternatives to cadmium-containing II-VI solar cells, which are environmentally toxic.

Perovskite Nanocrystals for Energy Storage
The Brutchey Group has developed a method to synthesize high quality perovskite nanocrystals at temperatures ranging from room temperature to 80 °C, on the gram scale, and in near 100% isolated yield. Once in hand, we are studying the basic dielectric and structural properties of these nanocrystals as a function of their size and composition. Particular attention is being paid to modifying the surface chemistry of these nanocrystals and studying the effect of surface modification on their dispersibility in solvents and polymer matrixes and their dielectric properties (in terms of permittivity and dielectric loss). By controlling the composition and surface chemistry of the perovskite nanocrystals, we have a fine level of control over the dielectric properties of the final material. Ultimately, the nanocrystals are being incorporated into polymer nanocomposites to make high energy density capacitors for energy storage applications.

Selected publications

 

 
[38] Webber, D. H.; Buckley, J. J.; Antunez, P. D.;
Brutchey, R. L.* Facile Dissolution of Selenium and Tellurium in a Thiol-Amine Solvent Mixture under Ambient Conditions. Chemical Science 2014, manuscript in press.

 
[37] Buckley, J. J.
; Couderc, E.; Greaney, M. J.; Munteanu, J.; Riche, C. T.; Bradforth, S. E.*; Brutchey, R. L.* Chalcogenol Ligand Toolbox for CdSe Nanocrystals and Their Influence on Exciton Relaxation Pathways. ACS Nano 2014, 8, 2512-2521. ( these authors contributed equally)

 
[36] Culver, S. P.
; Beier, C. W.; Rafson, J. P.; Brutchey, R. L. Surface Modification of BaTiO3 Inclusions in Polydicyclopentadiene Nanocomposites for Energy Storage. Journal of Applied Polymer Science 2014, 131, 40290. ( these authors contributed equally)

 
[35] Culver, S. P.; Stepanov, V.; Mecklenburg, M.; Takahashi, S.;
Brutchey, R. L. Low Temperature Synthesis and Characterization of Lanthanide-Doped BaTiO3 Nanocrystals.  Chemical Communications 2014, 50, 3480-3483.

 
[34] Rabuffetti, F. A.; Culver, S. P.; Lee, J. S.;
Brutchey, R. L. Local Structural Investigation of Eu3+-Doped BaTiO3 Nanocrystals. Nanoscale 2014, 6, 2909-2914.

 
[33] Rabuffetti, F. A.; Culver, S. P.; Suescun, L.;
Brutchey, R. L. Structural Disorder in AMoO4 (A = Ca, Sr, Ba) Scheelite Nanocrystals. Inorganic Chemistry 2014, 53, 1056-1061. (cover article)

 
[32] Rabuffetti, F. A.;
Brutchey, R. L. Local Structure of Ba1–xSrxTiO3 and BaTi1–yZryO3 Nanocrystals Probed by X-ray Absorption and X-ray Total Scattering. ACS Nano 2013, 7, 11435-11444.

 
[31] Couderc, E.; Greaney, M. J.;
Brutchey, R. L.*; Bradforth, S. E.* Direct Spectroscopic Evidence of Ultrafast Electron Transfer from a Low Band Gap Polymer to CdSe Quantum Dots in Hybrid Photovoltaic Thin Films. Journal of the American Chemical Society 2013, 135, 18418-18426.

 
[30] Webber, D. H.;
Brutchey, R. L. Alkahest for V2VI3 Chalcogenides: Dissolution of Nine Bulk Semiconductors in a Diamine-Dithiol Solvent Mixture. Journal of the American Chemical Society 2013, 135, 15722-15725. (highlighted in C&EN and JACS Spotlight)

 
[29] Culver, S. P.; Rabuffetti, F. A.; Zhou, S.; Mecklenburg, M.; Song, Y.; Melot, B. C.;
Brutchey, R. L. Low Temperature Synthesis of AMoO4 (A = Ca, Sr, Ba) Scheelite Nanocrystals. Chemistry of Materials 2013, 25, 4129-4135.

 
[28] Greaney, M. J.; Araujo, J.; Burkhart, B.; Thompson, B. C.;
Brutchey, R. L. Novel Semi-Random and Alternating Copolymer Hybrid Solar Cells Utilizing CdSe Multipods as Versatile Acceptors. Chemical Communications 2013, 49, 8602-8604. (cover article)

 
[27] Antunez, P. D.; Webber, D. H.;
Brutchey, R. L. Solution-Phase Synthesis of Highly Conductive Tungsten Diselenide Nanosheets. Chemistry of Materials 2013, 25, 2385-2387. (highlighted in C&EN)

 
[26] Beier, C. W.; Sanders, J. M.;
Brutchey, R. L. Improved Breakdown Strength and Energy Density in Thin Film Polyimide Nanocomposites with Small Barium Strontium Titanate Nanocrystal Fillers. Journal of Physical Chemistry C 2013, 117, 6958-6965. (cover article)

 
[25] Lazarus, L. L.; Riche, C. T.; Malmstadt, N.*;
Brutchey, R. L.* The Effect of Ionic Liquid Impurities on the Synthesis of Silver Nanoparticles. Langmuir 2012, 28, 15987-15993.

 
[24] Buckley, J. J.; Rabuffetti, F. A.; Hinton, H. L.;
Brutchey, R. L. Synthesis and Characterization of Ternary SnxGe1-xSe Nanocrystals. Chemistry of Materials 2012, 24, 3514-3516.

 
[23] Rabuffetti, F. A.; Lee, J. S.;
Brutchey, R. L. Low Temperature Synthesis of Complex Ba1-xSrxTi1-yZryO3 Perovskite Nanocrystals. Chemistry of Materials 2012, 24, 3114-3116.

 
[22] Lazarus, L. L.; Riche, C. T.; Marin, B. C.; Gupta, M.; Malmstadt, N.*;
Brutchey, R. L.* Two-Phase Microfluidic Droplet Flow of Ionic Liquids for the Synthesis of Gold and Silver Nanoparticles. ACS Applied Materials and Interfaces 2012, 4, 3077-3083. (cover article)

 
[21] Webber, D. H.;
Brutchey, R. L. Nanocrystal Ligand Exchange with 1,2,3,4-thiatriazole-5-thiolate and its Facile In-situ Conversion to Thiocyanate. Dalton Transactions 2012, 41, 7835-7838. (cover article)

 
[20] Rabuffetti, F. A.;
Brutchey, R. L. Structural Evolution of BaTiO3 Nanocrystals Synthesized at Room Temperature. Journal of the American Chemical Society 2012, 134, 9475-9487.

 
[19] Greaney, M. J.; Das, S.; Webber, D. H.; Bradforth, S. E.;
Brutchey, R. L. Improving Open Circuit Potential in Hybrid P3HT:CdSe Bulk Heterojunction Solar Cells via Colloidal tert-Butylthiol Ligand Exchange. ACS Nano 2012, 6, 4222-4230.

 
[18] Rabuffetti, F. A.; Lee, J. S.;
Brutchey, R. L. Vapor Diffusion Sol-Gel Synthesis of Fluorescent Perovskite Oxide Nanocrystals. Advanced Materials 2012, 24, 1434-1438.

 
[17]  Webber, D. H.;
Brutchey, R. L. Ligand Exchange on Colloidal CdSe Nanocrystals Using Thermally Labile tert-Butylthiol for Improved Photocurrent in Nanocrystal Films. Journal of the American Chemical Society 2012, 134, 1085-1092.

 
[16] Norako, M. E.; Greaney, M. J.;
Brutchey, R. L. Synthesis and Characterization of Wurtzite Phase Copper Tin Selenide Nanocrystals. Journal of the American Chemical Society 2012, 134, 23-26.

 
[15] Rabuffetti, F. A.;
Brutchey, R. L. Local Structural Distortion of BaZrxTi1-xO3 Nanocrystals Synthesized at Room Temperature. Chemical Communications 2012, 48, 1437-1439.

 
[14] Rabuffetti, F. A.;
Brutchey, R. L. Tailoring the Mechanism of the Amorphous-to-Crystalline Phase Transition of PbTiO3 via Kinetically Controlled Hydrolysis. Chemistry of Materials 2011, 23, 4063-4076. (cover article)

 
[13] Antunez, P. D.; Buckley, J. J.;
Brutchey, R. L. Tin and Germanium Monochalcogenide IV–VI Semiconductor Nanocrystals for Use in Solar Cells. Nanoscale 2011, 3, 2399-2411.

 
[12] Webber, D. H.;
Brutchey, R. L. Photochemical Synthesis of Bismuth Selenide Nanocrystals in an Aqueous Micellar Solution. Inorganic Chemistry 2011, 50, 723-725.

 
[11]  Lazarus, L. L.; Yang, A. S.-J.; Chu, S.;
Brutchey, R. L.*; Malmstadt, N.* Flow-Focused Synthesis of Monodisperse Gold Nanoparticles Using Ionic Liquids on a Microfluidic Platform. Lab on a Chip 2010, 10, 3377-3379.

 
[10]  Lazarus, L. L.;
Brutchey, R. L. Heterogeneous Fullerene-Supported Osmium Tetroxide Catalyst for the cis-Dihydroxylation of Olefins. Dalton Transactions 2010, 39, 7888-7890.

 
[9]  Beier, C. W.; Cuevas, M. A.;
Brutchey, R. L. Low-Temperature Synthesis of Solid-Solution BaxSr1-xTiO3 Nanocrystals. Journal of Materials Chemistry 2010, 20, 5074-5079.

 
[8]  Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.;
Brutchey, R. L. Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells. Journal of the American Chemical Society 2010, 132, 4060-4061.

 
[7]  Beier, C. W.; Cuevas, M. A.;
Brutchey, R. L. Effect of Surface Modification on the Dielectric Properties of BaTiO3 Nanocrystals. Langmuir 2010, 26, 5067-5071.

 
[6]  Norako, M. E.;
Brutchey, R. L. Synthesis of Metastable Wurtzite CuInSe2 Nanocrystals. Chemistry of Materials 2010, 22, 1613-1615.

 
[5]  Norako, M. E.; Franzman, M. A.;
Brutchey, R. L. Growth Kinetics of Monodisperse       Cu-In-S Nanocrystals Using a Dialkyl Disulfide Sulfur Source. Chemistry of Materials 2009, 21, 4299-4304.

 
[4]  Webber, D. H.;
Brutchey, R. L. Photolytic Preparation of Tellurium Nanorods. Chemical Communications 2009, 5701-5703.

 
[3]  Franzman, M. A.;
Brutchey, R. L. Solution-Phase Synthesis of Well-Defined Indium Sulfide Nanorods. Chemistry of Materials 2009, 21, 1790-1792.

 
[2]  Franzman, M. A.; Pérez, V.;
Brutchey, R. L. Peroxide-Mediated Synthesis of Indium Oxide Nanocrystals at Low Temperatures. Journal of Physical Chemistry C 2009, 113, 630-636.

 
[1]  Beier, C. W.; Cuevas, M. A.;
Brutchey, R. L.  Room-Temperature Synthetic Pathways to Barium Titanate Nanocrystals. Small 2008, 4, 2102-2106.


 

Chemistry Dept., USC College of Letters, Arts & Sciences